
Developping drivers on small machines

2013/09/24

Willy Tarreau
<willy@haproxy.com>
HAProxy / ALOHA R&D

http://www.haproxy.com/

1 of 27

Who am I ?

Lead architect at HAProxy France

Long time maintainer of very old kernels (2.4, 2.6.32)

Always interested in stuffing Linux anywhere :-)

2 of 27

Day to day job - the good and the ugly

Develop, test, optimize the HAProxy load balancer for extreme usages

with CPU usage at 85% system, you focus mostly on network stack and drivers

Develop tools to stress test haproxy and network stack
⇒ focus on efficiency and nothing else

Some recreation with easier tasks like GPIO, I2C, watchdogs, leds, LCD drivers for our ALOHA
appliances

3 of 27

Developing network products

Always requires multiple machines, minimum 3 :

the tested system must be saturated

the testers must not be saturated

4 of 27

Developing network products (cont'd)

CPUs and software become faster ⇒ hardware limits are hard to reach

Preferrably use 5+ machines (&switches) for reliable 20-60 Gbps tests

5 of 27

Developing network products (cont'd)

Cost and heat of hardware plus switches means they have to stay in the lab

Testing young features may require to update all kernels for each test (eg: TFO)

⇒ All this just to stress your code, how to simplify this ?

6 of 27

VMs ? not really suited for these tasks

Network workloads are highly sensitive to latency and jitter

Nothing reproducible ⇒ not suited for performance testing

SMP VMs do not always reproduce race bugs

Hardware emulation does not reflect reality (eg: bus latency, interrupt rates, inter-packet gaps,...)

Black-out on what the HV does (extra memory copies, merging, etc...)

Also VMs are not directly connectable to a breadboard :-)

7 of 27

Why not consider small HW alternatives ?

Portable code does not depend on specific hardware

Various architectures available: x86, MIPS, ARM, ...

don't be afraid of cross-compiling!

Smaller hardware is easier to saturate
⇒ less network nodes needed

Response time is emphasized (good for user interfaces)

ALOHA's WUI and APIs are developped on ALIX

Good reproducibility, sometimes even better than desktop PCs

Small caches / memory busses tend to magnify the impact of memory accesses

Single/dual issue CPUs, low GHz, 1..few cores, emphasizes effects of missed optimizations

⇒ Small HW behaves much like large HW with all numbers scaled down

8 of 27

Pros: feels much more "real" than VMs

Large choice of SMP hardware where concurrency really matters

Low latency access to onboard devices
⇒ most of the time is spent in YOUR code

Availability of Gigabit Ethernet ports, compatible with laptops/desktop PCs
⇒ 4 GigE ports on the AX3-4 :-)

Availability of a wide choice of busses (PCI, PCIe, USB, I2C, SPI, ...)
⇒ develop/experiment with standard hardware then move it to the target

9 of 27

Pros: Cost

I can afford to buy the hardware I want to play with, and have as many as I need (eg: 4-5 ALIX at home,
...)

I don't fear frying one (think GPIO, overclocking, stopping fans)
⇒ never fried one even after some soldering

I don't care about the risk of damage when carrying them in by bag

Sometimes the price/features ratio is attractive even for serious projects (eg: BBB)

Board Price Main features

BeagleBone Black $45 Cortex A8, HDMI, LAN, USB-powered

PC Engines ALIX 2D13 ~$100 x86, 3 LAN, mini-PCI, IDE

GlobalScale Mirabox ~$150 ARMv7, 2 GigE, PCIe, USB3

 Some manufacturers are willing to donate hardware when you ask them!

10 of 27

Pros: Silence / Heat / Space / Weight / Power

Only fanless accepted, rare tolerance for very slow fans (Atom, XP-GP)

Heat : limited heating is the condition for no fan

No fan means no dust

Space : no dedicated room, it's easy to stack them on the desk

order short cables, but use power adapters with long cords

Not a single hard disk anymore at home nor in the lab

Weight : bring a few machines everywhere with you to test your ideas as they come.

Power : you don't want to carry the power adapters with you, and prefer to power the devices over USB
(LS/Dockstar/BBB only).

11 of 27

Pros: Build time

Kernel: start from xxx_defconfig and disable unused features
(eg: do you need SOUND ? WIRELESS ? BT ? SATA ? IPSEC ? IPV6 ? NETFILTER ?)
⇒ stripped down configs build in just a few tens of seconds on a core i5 laptop

Incredibly appreciated for "git bisect" (make clean/make) !

But no savings to expect on user land in general

 Choose the compiler version and/or options that provide you the best balance between features and
build speed. Remember this is not the target platform.

12 of 27

Pros: Boot time, console access

PC: one minute from power on to prompt is not uncommon (worse with PXE)

Booting in 10 seconds is normal on small hardware.

Can do better for some usages using a minimal initramfs

Keep a list of very short copy-pastable boot commands

Boot loaders could be improved but are already great (everything editable)

Even the nastiest kernel panics are caught verbatim over the serial console

 Pay attention to the console, must be accessible from outside, and use true RS232, 3..5V TTL or
self-powered USB.

13 of 27

Pros: Resistance to bad behaviour

No risk of frying a hard drive or losing BIOS settings with power cycles.

Low currents, much more resistant than PC hardware to soldering mistakes

Does not require any special packing even in a bag full of junk

BUT! be careful not to confuse 12V adapters with 5V ones, this can be fatal!

14 of 27

Pros: Wide availability of hardware settings

Sometimes you want to understand what limits your code

When you have the datasheets (still waiting for your response Marvell), you realize how much margin
you get on certain settings such as CPU speed and RAM latency.

 Dockstar's RAM bandwidth may be doubled by setting registers

Various other things such as PCIe speed, component priorities, etc...

⇒ Helps figuring what your code is sensible to.

15 of 27

Pros: options for supporting standard components

USB is omni-present

Several devices offer PCIe busses
⇒ appreciated to run a PC NIC with the same driver as the
target (eg: igb runs pretty well on the mirabox) →

I2C is almost always available and usable to develop various I/O boards

Prototype of ALOHA rack duo power distribution board

16 of 27

Cons

ASM optimizations or extended instruction sets not always present (eg: bitops, SSE missing on Atom,
integer divide missing on many ARM CPUs, ...)

Hardware perf counters can differ or not exist, making profiling harder

Timing-dependant bugs often require the target system

Not all available boards are fully supported by mainline kernels, be careful

Some boards are hard to boot (complex cmdlines with many memory mappings, out of tree drivers,
such as the snowball ...)

Some boards have limited designs that can fool you into believing there is a problem with your code
(eg: 470 Mbps Gig NICs, Ethernet over USB, ...)

Some platform specific patches might not be available for your platform (eg: Netmap)

⇒ Using small platforms does not save you from testing on the target platform from time to
time.

17 of 27

Important

Don't waste your time trying to build your own toolchain : use crosstool-ng instead (and if it fails,
contribute back)

Don't waste your time trying to get your preferred development platform to work, use another one
instead.

Don't try to establish performance ratios between your development platform and the target. That
never works!

Don't try to optimize for the development platform, think about the target

Do not claim any big improvement before verifying it on the target

18 of 27

General hints

Prefer little endian and alignment traps to ensure maximum portability

Minimal kernel to save both build time and boot time

Minimal initramfs to save on boot time

Put your SSH pubkeys in the root account

Configure .ssh/config to connect using short names (eg: ssh c1/c2/s1/s2)

Ensure that the target rootfs has all the required tools

NFS root can be even better but limits network experimentations

Don't be ashamed to keep git repos with extremely ugly patches that will never reach mainline if they
save you some time and hassle.
⇒ Only issue is with git bisect.

And don't pollute upstream maintainers with your specific crap !

19 of 27

Kernel specific hints

make ARCH=$arch CROSS_COMPILE=$cross_prefix {oldconfig|zImage|modules}

Enable CONFIG_EARLY_PRINTK, CONFIG_IKCONFIG_PROC, CONFIG_DEVTMPFS_MOUNT

Prefer modules for your driver, but some drivers might have annoying side effects

Better have several light configs than a single fat one

Base your work on mainline and always keep one recent working version

Keep all your experimental kernel configs, kernel versions are not enough

Dissociate the kernel from the rootfs

 have the kernel embed its own modules. Busybox in an initramfs also helps a lot.

A build script does everything and even appends DTB for multiple boards and uploads the kernels to
the TFTP area.

20 of 27

Kernel specific hints (cont'd)

Overview of my kernel build script

make prepare1.

make -j modules2.

make modules_install3.

tar cf initramfs/modules.tar $INSTALLDIR4.

make -j {bzImage|uImage|zImage}5.

optionally: make dtbs && mkimage6.

21 of 27

Userspace hints

Spend enough time optimizing the boot process, it will pay off very quickly.

Disable all unneeded services, even the rarely used ones

Disable anything that requires network connectivity

Rootfs may appear in various forms (RAM, CF, NAND, MicroSD, USB, NFS, ?)

Use fast passwords (if any) for the console, and none for sudo

Keep a local config if booting many similar machines over the network

Don't use the same IP address on multiple devices

And note MAC/IP/hostname somewhere for easier identification when you start to get lost (/etc/hosts,
DHCP configs, ...)

22 of 27

Userspace hints (con't)

Do not miss any single tool, install any required library etc...
⇒ you need to test, debug and measure your code!

Mandatory in the rootfs : strace, taskset, top, vmstat, perf, tcpdump, if_rate

Mandatory available : gdb (both native and cross)

Copy-pastable notes with setup commands, local scripts, ...

Sometimes useful to have some generic scripts that depend on the device they're running on (eg:
network setup) .

If playing a lot with the network, reserve an Ethernet port for admin if possible

23 of 27

Better, build your own rootfs!

You need :
/sbin/init : busybox is a good start for this

 having a pre-init is even more convenient

/dev : use devtmpfs

/proc, /sys: mount them as usual

/bin/everything : busybox is fine here as well

⇒ My rescue rootfs contains dev, tmp, bin, sbin, lib, var, usr/bin, usr/sbin, proc, sys and starts with a
pre-init calling /busybox --install when mounting root fails.

 Various other projects allow you to build fully functional rootfs in the 1..10 MB range (OpenWRT,
Buildroot, LFS, OpenEmbedded, ...)

24 of 27

Various boot choices

No one size fits all

Kernel options

Local storage : FS (grub, syslinux), NAND (u-boot, redboot)

Remote storage : PXE (pxelinux), TFTP (u-boot, redboot)

Rootfs options

Local storage : block device (ext2/3/4, squashfs, ...)

Local storage : MTD (eg: ubifs)

Remote storage : NFS

Loaded into RAM by boot loader from local/remote image (ext2/3/4, squashfs, ...)

Large initramfs embedded in the bzImage

 Loading over true GigE is generally faster than local devices which are generally faster than 100
Mbps network.

25 of 27

Hardware suggestions

My platforms of choice at the moment :
Dockstar for GigE powered over USB (modded)

OpenBlocks AX3-4 for SMP and high performance networking

Mirabox when PCIe is needed, or to have two GigE ports in my pocket

ALIX for i586, except I2C (unreliable)

Atom N450 for x86_64 (but has a small fan!)

GuruPlug for I2C devs (modded)

⇒ Various combinations when building small labs on my desk

 My ideal board would be the size of a BBB, have a dual-core Cortex A9, 2 true GigE ports, a few I/Os
and be powered over USB.

26 of 27

Conclusion

Developing on the kernel is easy when starting with hardware drivers, and can be really
cheap thanks to the wide choice of platforms. Everyone can hack in the kernel.

My everyday bag's contents

27 of 27

