ARM support in the
Linux kernel

Thomas Petazzoni
Free Electrons
thomas. petazzoni@free-electrons.com

» CTO and Embedded Linux engineer at Free Electrons

» Embedded Linux development: kernel and driver
development, system integration, boot time and power
consumption optimization, consulting, etc.

» Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

» We’re hiring!

» http://free-electrons.com

» Contributing the kernel support for the new Armada 370
and Armada XP ARM SoCs from Marvell (widely used in
NAS devices).

» Major contributor to Buildroot, an open-source, simple and
fast embedded Linux build system

» Living in Toulouse, south west of France

http://free-electrons.com

v

Background on the ARM architecture and Linux support
The problems

v Vv

Changes in the ARM kernel support

v

Getting the support for a SoC in mainline, story of Armada
370/XP

ARM Architecture ARM Core System-on-chip Board

Defines the instruction set, Is a specific implementation of Integrates the ARM core Integrates the SoC
interface with the MMU, a given ARM architecture. with a number of on a PCB with other
interrupts, etc. peripherals around it. components around it.
Delivered in the form of a netlist or
Itis just a specification. Verilog code to licensees. Done by silicon vendors, Done by board and
sold in the form system makers.
of a chip.

ARM Architecture CPU Core System-on-chip Board

ARM Core

SoC
peripheral

Board
peripheral

» Beyond the ARM core itself, a lot of freedom is left to the
SoC vendor.

> There is no standard for the devices, the management of
clocks, pinmuxing, IRQ controllers, timers, etc.

> Note: some things like IRQ controllers and timers are now
standardized.

> There is no mechanism to enumerate the devices available

inside the SoC. All devices have to be known by the kernel.

» arch/arm/

» arch/arm/{kernel,mm,1lib,boot}/
The core ARM kernel. Contains the code related to the ARM
core itself (MMU, interrupts, caches, etc.). Relatively small
compared to the SoC-specific code.

» arch/arm/mach-<foo>/
The SoC-specific code, and board-specific code, for a given
SoC family.

» arch/arm/mach-<foo>/board-<bar>.c.
The board-specific code.

» drivers/
The device drivers themselves.

» Exploding number of ARM SoC, from different vendors

» The historical maintainer, Russell King, got overflowed by
the amount of code to review.

» Code started to flow directly from sub-architecture
maintainers directly to Linus Torvalds.

» Focus of each sub-architecture teams on their own
problems, no vision of the other sub-architectures.

» Consequences: lot of code duplication, missing common
infrastructures, maintenability problems, etc.

» Linus Torvalds, March 2011: Gaah. Guys, this whole ARM
thing is a f*cking pain in the ass.

» On x86 PC, one can build a single kernel image (with many
modules) that boots and work on all PCs

» Good for distributions: they can ship a single kernel image.

» On ARM, it was impossible to build a single kernel that
would boot on systems using different SoCs.

> Issue for distributions: they have to build and maintain a
kernel image almost for each ARM hardware platform they
want to support.

» Need for ARM multiplatform support in the kernel.

» A new maintainer team for the

ARM sub-architectures: Arnd e onees
Bergmann (Linaro) (currently —
replaced by Kevin Hilman) and T Ghariramon

Olof Johansson (Google)

> All the ARM SoC-specific code
goes through them, in a tree called
arm-soc
» They send the changes accumulated in arm-soc to Linus
Torvalds.

Sub-arch 1 Sub-arch 2 Sub-arch 3

» Those maintainers have a cross-SoC view: detection of
things that should be factorized, consistency accross
SoC-specific code.

» Core ARM changes continue to go through Russell King.

» Role of the Linaro consortium

» Most devices inside an ARM SoC and on the board cannot be
dynamically enumerated: they have to be statically
described.

» The old way of doing this description was by using C code,
registering platform_device structures for each hardware
device. Each board was identified by a unique machine ID
passed by the bootloader.

» This code represented a significant portion of the code in
arch/arm/mach-<foo>.

()

From arch/arm/mach-at91/at91sam9263_devices.c

static struct resource
[0l =«
.start
.end
.flags

.start
.end
.flags

static struct platform_

.name
.id

.dev

},
.resource

.num_resources

};

some_init_code() {

udc_resources[] = {

= AT91SAM9263_BASE_UDP,
AT91SAM9263_BASE_UDP + SZ_16K - 1,
= IORESOURCE_MEM,

= NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,
= NR_IRQS_LEGACY + AT91SAM9263_ID_UDP,
= IORESOURCE_IRQ,

device at91_udc_device = {
= "at91_udc",
= -1,
={
.platform_data = &udc_data,

= udc_resources,
= ARRAY_SIZE(udc_resources),

platform_device_register(&at91_udc_device);

}

» This has been replaced by a hardware description done in
structure separated from the kernel, called the Device Tree.

» Also used on PowerPC, Microblaze, ARM64, Xtensa,
OpenRisc, etc.

» Not invented specifically for Linux: was part of the
OpenFirmware standard used on PowerPC.

» The Device Tree Source, in text format, gets compiled into a
Device Tree Blob, in binary format, thanks to the Device Tree
Compiler.

» Sources are stored in arch/arm/boot/dts

» At boot time, the kernel parses the Device Tree to instantiate
the available devices.

» Can also be used by other platform software than Linux: the
U-Boot and Barebox bootloaders have started using it as well.

()

/include/ "skeleton.dtsi"

VRS

compatib.
model =
interrup
chosen {

};

soc {

le = "brcm,bcm2835";
"BCM2835" ;
t-parent = <&intc>;

bootargs = "earlyprintk console=ttyAMAO";

compatible = "simple-bus";

#address-cells = <1>;

#size-cells = <1>;

ranges = <0x7e000000 0x20000000 0x02000000>;

[...]

intc: interrupt-controller {
compatible = "brcm,bcm2835-armctrl-ic";
reg = <0x7e00b200 0x200>;
interrupt-controller;
#interrupt-cells = <2>;

};

uart@20201000 {

compatible = "brcm,bcm2835-pl011", "arm,plO11", "arm,primecell";

reg = <0x7e201000 0x1000>;
interrupts = <2 25>;
clock-frequency = <3000000>;
status = "disabled";

/dts-v1/;
/memreserve/ 0x0c000000 0x04000000;
/include/ "bcm2835.dtsi"

/A
compatible = "raspberrypi,model-b", "brcm,bcm2835";
model = "Raspberry Pi Model B";
memory {
reg = <0 0x10000000>;
};
soc {
uart@20201000 {
status = "okay";
};
};
};

SoC

armada-370-xp.dtsi

A

armada-370.dtsi

Y

armada-xp.dtsi

armada-370-
mirabox.dts

armada-370-db.dts

A
[|]
armada-xp- armada-xp- armada-xp-
mv78230.dtsi mv78260.dtsi mv78460.dtsi
. S T
[
armada-xp-
openblocks- armada-xp-db.dts
ax3-4.dts

Without Device Tree

ulmage

Kernel C code includes platform_device registration
and board details from many boards. Board selected
through machine ID passed by bootloader.

U-Boot# bootm <kerneladdr>

With Device Tree

ulmage yourboard.dtb
No longer includes any platform_device registration
Preferred or board details. No more machine ID. The kernel simply
parses the DTB to know which devices are there.
U-Boot# bootm <kerneladdr> - <dtbaddr>
ulmage
Legacy
For non-DT Same thing, except that the DTB is directly
capable

appended to the kernel image.

Appended DTB A

(CONFIG_ARM_APPENDED_DTB)
U-Boot# bootm <kerneladdr>

bootloaders

» The idea of the Device Tree is that it should be a data
structure that represents the hardware.

» It should not be specific to Linux.
» It should not contain configuration, but only hardware
description

> The Device Tree becomes part of the kernel ABI. The kernel
must remain capable of using old Device Trees.

» Device Tree bindings are the description of a particular
entry of the Device Tree to represent a specific device (or set
of devices).

» Due the ABI stability requirement, they must be very carefully
designed.

» A specific mailing list, and a team of maintainers has been
assigned to review those bindings.

» Documentation/devicetree/bindings/

> Increase in complexity?

» Fits the need of distributions willing to build a single kernel
image that works on many ARM platforms.

» The SoC choice now contains a Allow multiple platforms to
be selected option, and all the SoC families that are
compatible with this can be compiled together in the same
kernel.

» There is still a split between ARMv4/ARMv5 on one side, and
ARMv6/ARMV7 on the other side.

» A lot of changes have been done in the ARM kernel to make
this possible: avoid two different platforms from defining the
same symbol, from using the same header names, no more
#ifdef but runtime detection instead.

» The support for all new SoCs must use the multiplatform
mechanism.

Configuration

GPIOO
GPIO
UART3 RX >

y

UART 3 12co scL
UART3 TX

GPIO1
SPI1 3
—)

MU X m——

A -
12C 0 | 12cospa”

SoC Configuration

Each ARM sub-architecture had its own pin-muxing code
The API was specific to each sub-architecture
A lot of similar functionality implemented in different ways

The pin-muxing had to be done at the SoC level, and couldn’t
be requested by device drivers

v

v

v

v

Device driver

Device driver

Device driver

Request pin muxing

SoC-specific pinctrl driver
drivers/pinctri/pinctri-*.c

pinctrl_ops

Pinctrl subsystem

“—
core

pinmux_ops

pinconf_ops

pinctrl_desc
List pins and pin groups
Control muxing of pins

Control configuration of pins

drivers/pinctrl/{core,devicetree,pinconf,pinmuxf}.c

Provides list of
pin groups

SoC .dtsi file

GPIO driver

drivers/gpio/gpio-*.c

| gpio_chip |

Board .dts file

Provides associations

between pin groups
and devices

irg_chip
]]

v v
GPIO IRQ
subsystem subsystem
core core

drivers/gpio kernel/irq

> In a System-on-Chip, all peripherals are driven by one or more
clocks.

» Those clocks are organized in a tree, and often are software
configurable.

» Since quite some time, the kernel had a simple API: clk_get,
clk_enable, clk_disable, clk_put that were used by
device drivers.

» Each ARM sub-architecture had its own implementation of
this API.

> Does not work for multiplatform kernels.

» Does not allow code sharing, and common mechanisms.

@

» A proper common clock framework has been added in
kernel 3.4, released in May 2012
» This framework:

>

Implements the clk_get, clk_put, clk_prepare,
clk_unprepare, clk_enable, clk_disable, clk_get_rate,
etc. API for usage by device drivers

Implements some basic clock drivers (fixed rate, gatable,
divider, fixed factor, etc.) and allows the implementation of
custom clock drivers using struct clk_hw and

struct clk_ops

Allows to declare the available clocks and their association to
devices in the Device Tree (preferred) or statically in the
source code (old method)

» Provides a debugfs representation of the clock tree
» Is implemented in drivers/clk

Device driver

Uses the public clock API
clk_get(), clk_put()

clk_prepare(), clk_unprepare()

clk_enable(), clk_disable()
clk_get_rate(), etc.

>
>

Uses the
clk_ops
operations
Clock framework

Clock driver
fixed-rate
Clock driver
gate

Clock driver

Describes:

- Clocks and their relations

- Which clocks are needed
for the different devices

Device Tree

>
i mux

Clock driver
der

N Clock driver
foo

N Clock driver
bar

Provided by
the base clock
framework

Provided by
the SoC code

> Another goal of the ARM cleanup is to have less code in
arch/arm and create proper drivers and related

infrastructures.

> For example

IRQ controller drivers drivers/irqchip/
Timer drivers drivers/clocksource/
PCl host controller drivers drivers/pci/host/
Clock drivers drivers/clk/
Pinmux drivers drivers/pinctrl/
Memory drivers drivers/memory/
Bus drivers drivers/bus/

3500000
3000000
w34
2500000 "35
36
w37
2000000 LEE
w39
=310
1500000 w31
m3.12rcl
1000000
500000
o

clocksource irgchip pinctrl clk dts

Size in bytes of the source code, in the following directories:
drivers/clocksource, drivers/irqchip, drivers/pinctrl, drivers/clk,
arch/arm/boot/dts.

Basic
"initialization"
Device Tree C file Timer
(SoC and board) T driver
basic header
files
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/
Serial port
IRQ controller earlyprintk driver
driver support (already existing
8250 driver)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/

Total: 10 patches

Basic
"initialization"
Device Tree C file Timer Pinctrl
(SoC and board) + driver driver
basic header
files
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/ drivers/pinctrl/
Serial port
IRQ controller earlyprintk driver GPIO
driver support (already existing driver
8250 driver)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/
Address
decoding
code
(Marvell specific)

arch/arm/mach-mvebu/

Total: 35 patches
Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.con 30/38

Ceoie SATA support
“initialization” IS
Device Tree Cfile Timer Pinctrl only ata
(SoC and board) + driver driver
bsic header SOTET
existing driver,
arch/arm/boot/dts/ arch/arm/mach-mvebu/ drivers/clocksource/ drivers/pinctrl/ enlv/Drjbinding
Serial port ”stl‘"""‘
IRQ controller earlyprintk driver GPIO kT
river support (already existin: driver
PP 8250ydriver) ¢ (il
new)
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/
Address Coherency
decoding Clock support
code L2 cache support drivers SMP support
and tree (Marvell
(Marvell specific) specific)
arch/arn/mach-nvebu/ arch/arn/mn/ drivers/clk/ arch/arm/mach-mvebu/ arch/arm/mach-nveb

Total: 99 patches

arch/arn/mach-mvebu/ arch/arn/mn/

Total: 58 patches

R Timer SATA support SDIO support
e e existing driver, existing driver,
Device Tree Cile — only DTS data only DT binding
(S0C and board) + driver
basic heads
SEErE Local timer XOR support USB support
support existing driver, existing driver,
dts/ ar b drivers/clocksource/ drivers/pinctrl/ enveTEinding) GIEy B CEED
1RQ controller
driver Serial port Network existing driver,
TR i B driver only DTS data
support (already existing driver
PP 8250 driver) (completely
new) 5Pl support
existing driver,
drivers/irqchip/ arch/arm/include/debug ~ drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/ only DTS data
Address Coherency
decoding Cloc) support
code L2 cache support drivers SMP support
and tree (Marvell
(Marvell specific) specific)
drivers/clk/ arch/arn/nach-nvebu/ arch/arn/mach-nvebu/

- T SATA support SDIO support
ot et driver existing driver, existing driver,
Device Tree Cfile Pinctrl only DTS data only DT binding
(50C and board) K driver
has"ﬁ "'::"e’ Local timer XOR support USB support
support existing driver, existing driver,
arch/arm/boot/dts/ b driver: ce/ drivers/pinctrl/ onty/DTbinding onhy[DTS/data)
IRQ controller
driver e Betnors
earlyprintk driver GPIO river
Iready existi i
support Cleadeosig driver (completely
new) Pl support
1RQ affinity existing driver,
racht only DTS data
drivers/irachip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/
Coherency
Clock support
L2 cache support drivers SMP support

MBus and tree (Marvell

driver specific) PCle DT
drivers/bus/ arch/arn/mn/ drivers/clk/ arch/arn/mach-mvebu/ arch/arm/mach-nvebu/

Thermal driver
LPAE support H=
arch/arn/mach-mvebu drivers/thermal

Total: 57 patches

- f— SATA support SDIO support
“initialization" driver edsingldfiver exisnoldrver]
Device Tree == pinctr! only DTS data only DT binding
(SoC and board) + driver
"Es'ﬁu';"e’ Local timer XOR support USB support
support existing driver, existing driver,
r /dts/ ar b drivers/clocksource/ drivers/pinctrl/ oaDTbinding AYEEED
1RQ controller port
driver . Network existing driver,
Serial port g b
eariyprintk driver GPIO LI CYESED
rt (already existing dri
supee 8250 driver) e {completely
new) SPl support
IRQ affinty existing driver,
. : ; | only DTS data
drivers/irqchip/ arch/arn/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/
Coherency
Clock support)
L2 cache support drivers SMP support oo
MBus and tree
driver
drivers/bus/ arch/arn/m/ arivers/clk/ ar ar drivers/pei/host
Device bus/NOR
LPAE support WS e driver
(new)
arch/arn/mach-mvebu drivers/thernal drivers/menory

Total: 66 patches

- f— SATA support SDIO support
“initialization" driver edsingldfiver exisnoldrver]
Device Tree k! pinctr only DTS data only DT binding
(S0C and board) + driver
“5'3‘ l*;a“e’ Local timer XOR support USB support
support existing driver, existing driver,
r /dts/ ar b drivers/clocksource/ drivers/pinctrl/ oaDTbinding AYEEED
1RQ controller port
driver . Network existing driver,
Serial port g b
eariyprintk driver GPIO LI CYESED
Iread i
o e e oty
new) SPI support
IRQ affinity existing driver,
; : ; | ly DTS dat
drivers/irqchip/ arch/arm/include/debug drivers/tty/serial/ drivers/gpio/ drivers/net/ethernet/ G IICHE
Coherency
MBus Clock support)
driver with DT L2 cache support drivers SMP support e
support and tree
drivers/bus/ arch/arn/m/ drivers/clk/ ar ar drivers/pci/host
NAND PCle Mt Big
support support endian
Device bus/NOR started started support
LPAE support WS e driver
(new)
arch/arn/mach-mvebu drivers/thernal drivers/menory drivers/mtd/nand drivers/pci

Total: 92 patches

» Throw away the vendor BSP code. Most likely it is
completely crappy. You have to start from scratch.

» Start small, and send code piece by piece. Don't wait to
have everything fully working.

» Comply with the latest infrastructure changes: Device
Tree, clock framework, pinctrl subsystem. They are
mandatory.

» Read and post to the LAKML, Linux ARM Kernel Mailing
List

» Listen to reviews and comments, and repost updated
versions regularly.

» Look at recently merged sub-architectures: highbank,
mvebu, sunxi, bcm?2835, socfpga, etc.

Over the last year, ARM has gone from a constant
headache every merge window to an outstanding
citizen in the Linux community

Linus Torvalds, August 2012

Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Thanks to Gregory Clement, Ezequiel Garcia (Free Electrons,
working with me on Marvell mainlining), Lior Amsalem and Maen
Suleiman (Marvell)

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2013/kernel-recipes/arm-
support-kernel/

http://free-electrons.com/pub/conferences/2013/kernel-recipes/arm-support-kernel/
http://free-electrons.com/pub/conferences/2013/kernel-recipes/arm-support-kernel/

