
 

Kernel Recipes 2013 – Samir Bellabes

Linux Security Modules

SELinux, AppArmor & Tomoyo
trough security models 

-

Kernel Recipes 2013



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1
● Formal models for computer security

● Specify functional & assurance requirements → CC

● Implementation

● Testing → CC

CC = Common Criteria



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1
● LOMAC : Low Water-Mark Mandatory Access Control - 2000

● Bell-La Padula (BLP) – 1973

● object-capability - 1981

● Take-grant - 1977

● Biba – 1977 

● Access control Matrix – 1971

● ..



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1

security

integrity

authentication

IMA

keys

availability

confidentiality

auditcrypto

accounting

non repudiation

Shared properties



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1

access control objectssubject

policy

What is MAC ?



 

Kernel Recipes 2013 – Samir Bellabes

Previously on KR Season 1

access control objectssubject

policy

What is MAC ?

Attributes are
applied

They are
differents



 

Kernel Recipes 2013 – Samir Bellabes

Summary



 

Kernel Recipes 2013 – Samir Bellabes

Summary
● Model for SELinux

– History & discuss

● Model for AppArmor

– History & discuss

● Model for Tomoyo

– History & discuss

● Summary of the Linux Security Summit 2013 meeting

● Discuss about using LSM hooks for “information flow”



 

Kernel Recipes 2013 – Samir Bellabes

Access Control: timetable

SELinux proposed by NSA
Hooks mechanism
2001

hooks upstream
2003

removing LSM ?
2006

tomoyo
2009 → 

AppArmor
2010 → 

smack
2008 → 

Stacking / chaining : 2004 → ..

RBAC
92/96

LOMAC
2000

PaX
2000 → 

Linux 2.2 : 99 Linux 2.6 : 03Linux 2.0 : 96

Linux 2.4 : 01

Take Grant
77

Biba
77

Access Control
Matrix 71

Object
capablity

81

OrBAC
2003

TCSEC
Orange book

85

RSBAC
98

TMAC
98

ABAC
2003

RBAC : Role
TMAC : team
RSBAC : rule set
LOMAC : low
OrBAC : organise
ABAC : attribute

MAC/DAC
60/70

Bell-LP
73

SELinux
2003 → 



 

Kernel Recipes 2013 – Samir Bellabes

SELinux



 

Kernel Recipes 2013 – Samir Bellabes

Model for SELinux : history
● NSA was the original developer

● Implementation of the operating system security architecture called 
Flask

● In the 2.5.x series, LSM framework was developed,so SELinux was 
ported for 2.6.0

● Flask : Flux Advanced Security Kernel



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : the Flask architecture
● Flask architecture simply implements MAC

● Principle of “least privilege”

● Objects and subjects are related to security attributes inside a 
“security context”

● Dealing with security context is not easy, so we can refer to it with a 
SID : security identifier, a kind or pointer, reference to the context.

Exemple : it's working well for persistent objects

● A security decision can be made with {SID(subject), SID(object)}.

● Two kind of decisions exist : 

– Labeling decision : obj/sub transition → creating new file from directory

– Access decision : check permissions for operations using Access Vector 
Cache (AVC) : access vector gives decisions for all permissions for a 
object, or directly on the server policy



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : the Flask architecture
● Security policy over process and objects

● True innovation : splitting the technical architecture from the policy 
(not only a modularity)

● Demonstration by implementing :

– Type enforcement (TE) 1980-1985

– Role Based Access Control (RBAC) 1992-1996

– Multi Level Security (MLS)



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : TE – type enforcement
● SAT : Secure Ada Target, 1st implementation, late 1980s

● Labels (security informations) on subjects and objects

● security context with labels on subjects → “domain label” (DTE)

● security context with labels on objects → “type label” (DTE)

● class exist for using objects directly:

– Same type, but different class → can manage the situation

● TE uses role for users, not domain.

– credentials mechanism → b6dff3 : separate task security context from 
task_struct, so no more true label on subject

● TE enables the labeling decisions and the access decisions



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : TE – type enforcement
● obj3, obj1 and obj2 are in the same type “foo_t”

obj2

obj1
obj3

S1

S0

obj0

foo_t

bar_t



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : type enforcement
● “So it's all about classification ?”

– I think so, but it is not really a shared idea..



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles

USER



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles

USER

R0

R1

R2



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles

USER

R0

R1

R2

bar_t
snafu_t

ack_t

truc_t

foo_t



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles

USER

R0

R1

R2

foo_t

bar_t
snafu_t

ack_t

truc_t

obj2 obj1

obj0



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : RBAC
● RBAC : Role Based Access Control

● Attaching roles on users, attaching permissions on roles

USER

R0

R1

R2

foo_t

bar_t
snafu_t

ack_t

truc_t

obj2 obj1

obj0

USER+
Role transition



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : MLS
● It's about security levels

● SELinux implements Bell-Lapadula model



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : MLS
● It's about security levels

● SELinux implements Bell-Lapadula model

secret

top secret

confidential

unclassified

Transition states are managed

time



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : MLS
● It's about security levels

● SELinux implements Bell-Lapadula model

time

secret

top secret

confidential

unclassified

Transition states are managed

Read-down : Security(subject) > Security(object)

write-up: Security(subject) < Security(object)



 

Kernel Recipes 2013 – Samir Bellabes

SELinux model : MLS
● It's about security levels

● SELinux implements Bell-Lapadula model

time

secret

top secret

confidential

unclassified

Transition states are managed

Read-down : Security(subject) > Security(object)

write-up: Security(subject) < Security(object)

Opposite is Biba for integrity



 

Kernel Recipes 2013 – Samir Bellabes

SELinux : booting
● Booting / quit is a real deal : assure reliability on security is hard 

(embedded, ...).

● start_kernel()

● security_init()

● Initial SID (1)

● Initialize AVC, selinuxfs

● Set enforcing mode from config

● (some stuff called relabeling)

● Start /sbin/init with label context



 

Kernel Recipes 2013 – Samir Bellabes

AppArmor



 

Kernel Recipes 2013 – Samir Bellabes

Model for AppArmor : history
● Originally from 1998

● Upstream in 2.6.36



 

Kernel Recipes 2013 – Samir Bellabes

AppArmor model : type enforcement
● A modified domain type enforcement (again) : Profile is the domain 

type

– Normally subject ↔ objects ↔ permissions (type enforcement)

– But profile A = { (obj0, perm0), (obj1, perm1), .. }

– Profiles are stored in database

● Using information labels on objects (void *security) until creds patches 
(2.6.29)

● For files, AppArmor is using path-name as information, no label 
(dealing with mount point) (called implicit labeling)

● Using a technical mean called “deriving implicit types” ..



 

Kernel Recipes 2013 – Samir Bellabes

Tomoyo



 

Kernel Recipes 2013 – Samir Bellabes

Tomoyo model : type enforcement
● Process are attached a single domain

● If a process exec a program, divide or transit the domain

● Operations granularity on objects are “read/write/execute”



 

Kernel Recipes 2013 – Samir Bellabes

Tomoyo model : domain → path-named
● Starting with domain <kernel>

● Domain for /sbin/init is <kernel>/sbin/init/

● Exemple :

– <kernel>/sbin/init/etc/rc.d/service

– <kernel>/usr/sbin/sshd/bin/bash

● There are some exceptions (restarting services no more <kernel>/..) 



 

Kernel Recipes 2013 – Samir Bellabes

Tomoyo model : type enforcement
● Process are attached a single domain

● If a process exec a program, divide or transit the domain

● Operations granularity on objects are “read/write/execute”

exec
obj0

obj1

obj0

obj2

Permission on domain
Not process



 

Kernel Recipes 2013 – Samir Bellabes

Model for Tomoyo : history
● As far as I remember : Fighting 

● Revive “void *security” : b6dff3

● Hook for network : post_accept

● Merging

● ..



 

Kernel Recipes 2013 – Samir Bellabes

Summary of Linux Security Summit 2013



 

Kernel Recipes 2013 – Samir Bellabes

Summary of LSS 2013
● Update on all security modules.

● Security mechanisms : ASLR, anti-patterns : using PaX plugins for 
gcc (!), using Coccinelle (!!!!),

● Stacking (agaaaaain..) but now it's called multiple concurrent security 
models

● technical papers for embedded

● http://kernsec.org/wiki/index.php/Linux_Security_Summit_2013

http://kernsec.org/wiki/index.php/Linux_Security_Summit_2013


 

Kernel Recipes 2013 – Samir Bellabes

Using LSM hooks for
“information flow”



 

Kernel Recipes 2013 – Samir Bellabes

Using LSM hooks for
“information flow”

Entering #no_bullshit zone
Thanks Gandi for sponsoring Kernel Recipes



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● It's all about state machine and transitions

State 0

S1

socket()

S2

bind()

S1S1

S3

connect()



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● It's all about state machine and transitions

State 0

S1

socket()

S2

bind()

S1S1

S3

connect()

How can we build this interesting kind of graphs ?

Why not using LSM hooks as “borders” ?



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?

because ghosts are among us !



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● Let's take a memory buffer

● There are lots of functions which can modify m

– write(m,..), mmap(m,..), str*(m,..)

● Let's say you can actually don't miss a function which can modify m 
and you can put a trap (hook) inside all this functions.

● So now you can have the graph ..



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● Let's take a memory buffer

● There are lots of functions which can modify m

– write(m,..), mmap(m,..), str*(m,..)

● Let's say you can actually don't miss a function which can modify m 
and you can put a trap (hook) inside all this functions.

● So now you can have the graph ..

● What about m[10] = 0; ??

● How can you hook this operation ?



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● Ghosts ?

window window window

Doors
pick-locking anyone?

backdoor



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● Ghosts ?

window window window

Doors
pick-locking anyone?

backdoor

I'm a ghost,
I can cross walls..

Where is the hook ?



 

Kernel Recipes 2013 – Samir Bellabes

Information flow with hooks ?
● But it's possible to catch incoherent status of course

– Before there was 3 users inside, now there is 4 users.

● The incoherence will appears by keeping label informations on 
objects, and between two hooks.



 

Kernel Recipes 2013 – Samir Bellabes

Exiting #no_bullshit zone



 

Kernel Recipes 2013 – Samir Bellabes

What's next ? Security at KR season 3 ?..
● what are “technical mechanism” for security implementation ?

● It's called “hardened kernel”

→ ASLR, PaX, PIE/SSP, RELRO, toolchain, … 

→ KR Season 3 ?



 

Kernel Recipes 2013 – Samir Bellabes

Linux Security Modules

-

Thanks hupstream for this event !
Kernel Recipes 2013


