Eric Leblond

Stamus Networks

October 1, 2015

O Introduction

(2) Why capture

O Libcap and raw socket
(1) AF_PACKET

() PF_RING

() AF_PACKET goes multi*

() Netmap
() Latest AF_PACKET evolution

() ++zero copy
O Conclusion

Eric Leblond (Stamus Networks)

Kernel packet capture technologies

October 1, 2015

2/54

Eric Leblond

Co-founder of Stamus Networks
o Company providing network probe based on Suricata
o Focusing on bringing you the best of Suricata IDS technology

Open source hacker
o Suricata core developer
o Netfilter core team member

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

4/54

Raw socket: definition

A raw socket is an internet socket that allows direct sending and receiving of Internet
Protocol packets without any protocol-specific transport layer formatting.

Wikipedia

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 6/54

"The End of the Internet”

Googled “How will the world end”.

Was not disappointed.

[raw socket ...] spells catastrophe for the integrity of the Internet.

Steve Gibson in 2001

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 7154

"The End of the Internet”

o Talking about introduction of raw socket in MS Windows

o Allow users to write any packets
o Could be used to abuse protocol and [poorly implemented] OS

o Moreinfoat http://www.informit.com/articles/article.aspx?p=27289

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 8/54

http://www.informit.com/articles/article.aspx?p=27289

Raw socket: usage

Send and receive
o Send low level message: icmp, igmp
o Implement new protocol in userspace

Sniffing
o Capture traffic
o Promiscuous mode

o Use by network monitoring tools

o Debugging tools: tcpdump, wireshark
o Monitoring tools: iptraf, ntop, NSA
o Intrusion detection systems: snort, bro, suricata

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

9/54

Network Intrusion Detection System: definition

An intrusion detection system (IDS) is a device or software application that monitors
network or system activities for malicious activities or policy violations and produces
reports to a management station.

Wikipedia

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 10/54

Network Intrusion Detection System: challenge

IDS detection rule

alert http -z (msg:"ET WEB_SPECIFIC_APPS Webmin Directo
ry Traversal"; flow:to _server,established; content:"POST"; http_method; content:"/save_en
v.cgi"; http_uri; fast_pattern:only; content:"&user="; hittp_client_body; content:"|2e 2e 2
T|"; distance:0; http client_body; reference: ;Sites.utexas.edu/iso/2014/09/09/arbitrary-
file-deletion-as-root-in-webmin/; classtype:misc-attack; sid:2019157; rev:3;)

Some data
o Complexity of rule

o Work on recontructed stream
o Protocol field analysis

o Pattern recognition on ungzipped content (http_server_body)
o Got around 15000 rules in standard ruleset
o Need to inspect 10Gbps of trafic or more

V.

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 11/54

Suricata: Open source & multi threaded IDS

o IDS and IPS engine

o Getithere: http://www.suricata—-ids.org

o Project started in 2008

o Open Source (GPLv2) SU ATA

o Funded by consortium members (and originaly US
government)

o Run by Open Information Security Foundation (OISF)

o More information about OISF at
http://www.oisf.net/

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 12/54

http://www.suricata-ids.org
http://www.oisf.net/

Suricata Features

High performance, scalable through multi threading

Protocol identification

File identification, extraction, on the fly MD5 calculation

TLS handshake analysis, detect/prevent things like Diginotar
Hardware acceleration support:

Useful logging like HTTP request log, TLS certificate log, DNS logging
Lua scripting for detection

© 0 06 ©6 06 0 o

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 13/54

o Multi OS abstraction for packet capture
o All *nix, Windows
o Multi layer: Network, USB, ...

Raw socket: the initial implementation

A dedicated socket type

#include <sys/socket.h>
#include <netinet/in.h>
raw_socket = socket(AF_INET, SOCK RAW, int protocol);

Straight socket mode

o Get packet per packet via recvmsg
o Optional ioctl
o Get timestamp

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

16/54

"640 K ought to be enough for anybody."

Memory contraint design

ot Compu ey e e o No preallocation

- o On demand only
- ~haay

) ‘.:."\ ‘f.',‘_-j-“

. iy
R RN

- “m.“i’“
acmn "‘\»‘"\

"‘nfp o T o 3 o . T o oo oo o ’:

Disclaimer

Monoprocess

No Performance for you, go home now.

Marty Roesch about multithread and network data processing, 2010

Suricata architecture

NAPI (2001-200?)

Reducing interrupts usage
o Interrupts tempest at high packet rate
o All CPU time is sued to handle the interrupts
o NIC driver needs to be updated

No direct change for packet capture
o Change internal to device driver
o Direct performance impact on packet capture

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

21/54

-
/’ - Input Rate
-
= = = NoPolling

= == Device Polling

Captured Packets
EJ
-\

Input Rate

Figure 1. - Packet Capture Performance: Polling vs. non-polling

Table extracted from luca.ntop.org/Ring.pdf

luca.ntop.org/Ring.pdf

Internal path
o Data in card buffer
o Data copied to skb
o Data copied to socket
o Data read and copied by userspace

Memory map approach

Sharing is the solution
o Kernel expose some memory
o Userspace access memory directly
o Spare a message sending for every packets

mmap internal path
o Data in card buffer
o Data copied to skb
o Data copied to ring buffer
o Userspace access data via pointer in ring buffer

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

24 /54

TPACKET_V2

o setup

o socket(): creation of the capture socket
o setsockopt(): allocation of the circular buffer (ring) via PACKET_RX_RING option
o mmap(): mapping of the allocated buffer to the user process

O capture
o poll(): to wait for incoming packets
o shutdown
o close(): destruction of the capture socket and deallocation of all associated resources.

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 25/54

Memory organization

Ascii art
block #1 block #2
Fo— o + o o +
| frame 1 | frame 2 | | frame 3 | frame 4 |
Fo—————— Fom + Fo—— Fom +
block #3 block #4
Fo— o + o o +
| frame 5 | frame 6 | | frame 7 | frame 8 |
Fo— o + R o +
v
Components

o Frame contains a datagram data
o Blocks are physically contiguous region of memory

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 26 /54

Packet Size Linux 2.6.1 Linux 2.6.1 FreeBSD 4.8

(bytes) with NAPI with NAPI with Polling
and standard libpcap and libpcap-mmup('

64 25% 14.9 % 973 %

512 1.1% 11.7 % 473 %

1500 343 % 93.5 % 56.1 %

Table 2. — Percentage of captured packets (generated by stream.c) using kernel polling

Graph extracted from luca.ntop.org/Ring.pdf

luca.ntop.org/Ring.pdf

Suricata architecture

MMAP option
o Support of TPACKET_V2
o Zero copy mode

Implied changes
o Access data via pointer to ring buffer cell
o Release data callback

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

28/54

PF_RING original design (2004)

Architecture
O ring design
© mmap

o capture only interface

o skip kernel path
o putin ring buffer and discard

o user access the ring buffer

Project
o Project started by Luca Deri
o Available as separate sources

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

30/54

PF_RING performance

Packet Linux 2.6.1 Linux 2.6.1 FreeBSD 4.8 Linux 2.6.1
Size with NAPI with NAPI with Polling with NAPI+PF_RING
(bytes) and libpcap and and extended libpcap
standard libpcap-mmap’
64 25% 14.9 % 97.3 % 75.7 %
512 L1% 11.7% 473 % 47.0%
1500 343 % 93.5% 56.1 % 92.9%

Table 3. — Percentage of captured packets (generated by stream.c) using kernel polling

o Show real improvement on small size packets
o Pre optimisation result
o Better result in following version due to a better poll handling

Table extracted from luca.ntop.org/Ring.pdf

Eric Leblond (Stamus Networks)

Kernel packet capture technologies

October 1, 2015

31/54

luca.ntop.org/Ring.pdf

PF_RING going multicore (around 20087?)

Sharing the load

o Each core has a finite bandwidth capability

o Multicore CPU were introduced in 2006
o Sharing load become common

o Previously separate hardware was used to split the network load

Straight forward solution
o Allow multiple sockets to be attached to one interface
o Load balance over the attached sockets

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015

32/54

PF_RING code

Build system and sources
o Custom build system
o No autotools or cmake
o Include patched drivers

SVN stats

git log —format=format:"%s"
15 Minor change

20 fix

20 minor changes

22 lib refresh

30 Library refresh

43 minor change

67 minor fix

| sort | unig —c | sort —n | tail —n10

Eric Leblond (Stamus Networks)

Kernel packet capture technologies October 1, 2015 34 /54

David Miller in da place

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 36 /54

AF_PACKET load balancing (2011)

Multiple sockets on same interface
o Kernel does load balancing
o Multiple algorithms

LB algorithm
o Round-robin
o Flow: all packets of a given flow are send to the same socket
o CPU: all packets treated in kernel by a CPU are send to the same socket

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 37/54

AF_PACKET CPU Load balancing

RSS queues

o Multiqueue NIC have multiple TX RX
o Data can be split in multiple queues

o Programmed by user
o Flow load balanced

RSS queues load balancing
o NIC does load balancing using hash function
o CPU affinity is set to ensure we keep the cache line

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

38/54

Thread | Thread || Thread | Thread

CPU 0 CPU 1 CPU 2 . CPU 3 CPU 4 CPU 5
Suricata CPU load-Balancing

tpacket_v3 (2011)

The problem
o Cell are fixed size
o Size is the one of biggest packet (MTU)
o Small packets use same memory as big one

Variable size cells
o Ring buffer
o Update memory mapping to enable variable sizes
o Use a get pointer to next cell approach

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 40/54

Netmap (2012)

o Similar approach than PF_RING

o skip kernel path
o putin ring buffer and discard

o User access the ring buffer
o Paired with network card ring

More info http://queue.acm.org/detail.cfm?id=2103536

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 42 /54

http://queue.acm.org/detail.cfm?id=2103536

Performances

FreeBSD bridging 0.690
netmap + libpcap emulation 7.500
netmap, native 10.660
optimized, FreeBSD 0.790
optimized, FreeBSD + netmap 3.050
ook M
user space + libpcap 0.400
linux kernel 2.100
user space + netmap 3.950

Table by Luigi Rizzo

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 43 /54

AF_PACKET rollover option (2013)

Single intensive flow
o Load balancing is flow based
o One intensive flow saturate core capacity
o Load needs to be shared

Principle
o Move to next ring when ring is full
o As a load balancing mode
o As a fallback method

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

45/54

\ y —— drop rate rolover

20000 30 - drop rate master
—— alerts rollover
= alerts master

Graph by Victor Julien

Rollover and suricata (2/2)

A TCP streaming issue
o Rollover activation lead to out of order packets
o Fool TCP stream reconstruction by suricata
o Result in invalid streams

Possible solution
o Evolve autofop multicapture
o Decode and dispatch packets

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

47 /54

DPDK (2012-)

Data Plane Development Kit
o set of libraries and driver
o design for fast packet processing
o impact on software architecture

Architecture
o multicore framework
o huge page memory
o ring buffers
o poll-mode drivers

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

48/54

Suricata workers mode limit

Packet treatment can be really long
o Involve 1/O on disk or network
o Huge computation like regular expression

Ring buffers are limited in size
o A slow packet can block a whole buffer
o Suricata need to dequeue faster

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

50/54

Need to evolve Suricata architecture

Switch to asynchronous
o Release ring buffer elements as fast as possible
o Buffer in userspace

An enhanced autofp approach?
o Fast decode
o Copy data to packet pool of detect thread
o With a fast decision
o Release data

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 51/54

Conclusion (1/2)

A small subject and a huge evolution

o Has follow evolution of hardware architecture
o Always need to deal with more speed

o 10Gbps is common
o 100Gbps is in sight

Multiple technologies
o Vanilla kernel propose some solutions
o Patching may be required to do more

Eric Leblond (Stamus Networks) Kernel packet capture technologies

October 1, 2015

53 /54

Conclusion (2/2)

Do you have questions ?

Contact me
0 Mail: eleblond@stamus—networks.com
o Twitter: @Regiteric

More information
o Suricata: http://www.suricata—ids.org
o PF_RING: http://www.ntop.org/products/packet—-capture/pf_ring/
O netmap: http://info.iet.unipi.it/~luigi/netmap/
o dpdk: http://dpdk.org/

Eric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 54 /54

eleblond@stamus-networks.com
http://www.suricata-ids.org
http://www.ntop.org/products/packet-capture/pf_ring/
http://info.iet.unipi.it/~luigi/netmap/
http://dpdk.org/

	Introduction
	Why capture
	Libcap and raw socket
	AF_PACKET
	PF_RING
	AF_PACKET goes multi*
	Netmap
	Latest AF_PACKET evolution
	++zero copy
	Conclusion

