
Kernel packet capture technologies

Éric Leblond

Stamus Networks

October 1, 2015

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 1 / 54

1 Introduction

2 Why capture

3 Libcap and raw socket

4 AF_PACKET

5 PF_RING

6 AF_PACKET goes multi*

7 Netmap

8 Latest AF_PACKET evolution

9 ++zero copy

10 Conclusion

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 2 / 54

Éric Leblond

Co-founder of Stamus Networks
Company providing network probe based on Suricata
Focusing on bringing you the best of Suricata IDS technology

Open source hacker
Suricata core developer
Netfilter core team member

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 4 / 54

Raw socket: definition

A raw socket is an internet socket that allows direct sending and receiving of Internet
Protocol packets without any protocol-specific transport layer formatting.

Wikipedia

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 6 / 54

"The End of the Internet"

[raw socket ...] spells catastrophe for the integrity of the Internet.

Steve Gibson in 2001

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 7 / 54

"The End of the Internet"

Talking about introduction of raw socket in MS Windows
Allow users to write any packets
Could be used to abuse protocol and [poorly implemented] OS

More info at http://www.informit.com/articles/article.aspx?p=27289

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 8 / 54

http://www.informit.com/articles/article.aspx?p=27289

Raw socket: usage

Send and receive
Send low level message: icmp, igmp
Implement new protocol in userspace

Sniffing
Capture traffic
Promiscuous mode
Use by network monitoring tools

Debugging tools: tcpdump, wireshark
Monitoring tools: iptraf, ntop, NSA
Intrusion detection systems: snort, bro, suricata

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 9 / 54

Network Intrusion Detection System: definition

An intrusion detection system (IDS) is a device or software application that monitors
network or system activities for malicious activities or policy violations and produces
reports to a management station.

Wikipedia

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 10 / 54

Network Intrusion Detection System: challenge

IDS detection rule

Some data
Complexity of rule

Work on recontructed stream
Protocol field analysis
Pattern recognition on ungzipped content (http_server_body)

Got around 15000 rules in standard ruleset
Need to inspect 10Gbps of trafic or more

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 11 / 54

Suricata: Open source & multi threaded IDS

IDS and IPS engine
Get it here: http://www.suricata-ids.org
Project started in 2008
Open Source (GPLv2)
Funded by consortium members (and originaly US
government)
Run by Open Information Security Foundation (OISF)
More information about OISF at
http://www.oisf.net/

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 12 / 54

http://www.suricata-ids.org
http://www.oisf.net/

Suricata Features

High performance, scalable through multi threading
Protocol identification
File identification, extraction, on the fly MD5 calculation
TLS handshake analysis, detect/prevent things like Diginotar
Hardware acceleration support:
Useful logging like HTTP request log, TLS certificate log, DNS logging
Lua scripting for detection

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 13 / 54

libpcap

Multi OS abstraction for packet capture
All *nix, Windows
Multi layer: Network, USB, . . .

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 15 / 54

Raw socket: the initial implementation

A dedicated socket type

#include <sys / socket . h>
#include < n e t i n e t / i n . h>
raw_socket = socket (AF_INET , SOCK_RAW, i n t p ro toco l) ;

Straight socket mode
Get packet per packet via recvmsg
Optional ioctl

Get timestamp

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 16 / 54

Memories of another time

"640 K ought to be enough for anybody." Memory contraint design
No preallocation
On demand only

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 17 / 54

Disclaimer

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 18 / 54

IDS design

Monoprocess

No Performance for you, go home now.

Marty Roesch about multithread and network data processing, 2010

Suricata architecture

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 19 / 54

NAPI (2001-200?)

Reducing interrupts usage
Interrupts tempest at high packet rate
All CPU time is sued to handle the interrupts
NIC driver needs to be updated

No direct change for packet capture
Change internal to device driver
Direct performance impact on packet capture

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 21 / 54

NAPI performance

Table extracted from luca.ntop.org/Ring.pdf

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 22 / 54

luca.ntop.org/Ring.pdf

Problem of the socket mode

Internal path
Data in card buffer
Data copied to skb
Data copied to socket
Data read and copied by userspace

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 23 / 54

Memory map approach

Sharing is the solution
Kernel expose some memory
Userspace access memory directly
Spare a message sending for every packets

mmap internal path
Data in card buffer
Data copied to skb
Data copied to ring buffer
Userspace access data via pointer in ring buffer

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 24 / 54

TPACKET_V2

setup
socket(): creation of the capture socket
setsockopt(): allocation of the circular buffer (ring) via PACKET_RX_RING option
mmap(): mapping of the allocated buffer to the user process

capture
poll(): to wait for incoming packets

shutdown
close(): destruction of the capture socket and deallocation of all associated resources.

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 25 / 54

Memory organization

Ascii art
block #1 block #2

+---------+---------+ +---------+---------+
| frame 1 | frame 2 | | frame 3 | frame 4 |
+---------+---------+ +---------+---------+

block #3 block #4
+---------+---------+ +---------+---------+
| frame 5 | frame 6 | | frame 7 | frame 8 |
+---------+---------+ +---------+---------+

Components
Frame contains a datagram data
Blocks are physically contiguous region of memory

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 26 / 54

Performance

Graph extracted from luca.ntop.org/Ring.pdf

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 27 / 54

luca.ntop.org/Ring.pdf

Suricata architecture

MMAP option
Support of TPACKET_V2
Zero copy mode

Implied changes
Access data via pointer to ring buffer cell
Release data callback

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 28 / 54

PF_RING original design (2004)

Architecture
ring design
mmap
capture only interface

skip kernel path
put in ring buffer and discard

user access the ring buffer

Project
Project started by Luca Deri
Available as separate sources

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 30 / 54

PF_RING performance

Show real improvement on small size packets
Pre optimisation result
Better result in following version due to a better poll handling

Table extracted from luca.ntop.org/Ring.pdf

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 31 / 54

luca.ntop.org/Ring.pdf

PF_RING going multicore (around 2008?)

Sharing the load
Each core has a finite bandwidth capability

Multicore CPU were introduced in 2006
Sharing load become common

Previously separate hardware was used to split the network load

Straight forward solution
Allow multiple sockets to be attached to one interface
Load balance over the attached sockets

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 32 / 54

Suricata autofp multi reader

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 33 / 54

PF_RING code

Build system and sources
Custom build system
No autotools or cmake
Include patched drivers

SVN stats

g i t log −−format=format : "%s " | s o r t | uniq −c | s o r t −n | t a i l −n10
15 Minor change
20 f i x
20 minor changes
22 l i b re f resh
30 L i b r a r y re f resh
43 minor change
67 minor f i x

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 34 / 54

David Miller in da place

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 36 / 54

AF_PACKET load balancing (2011)

Multiple sockets on same interface
Kernel does load balancing
Multiple algorithms

LB algorithm
Round-robin
Flow: all packets of a given flow are send to the same socket
CPU: all packets treated in kernel by a CPU are send to the same socket

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 37 / 54

AF_PACKET CPU Load balancing

RSS queues
Multiqueue NIC have multiple TX RX
Data can be split in multiple queues

Programmed by user
Flow load balanced

RSS queues load balancing
NIC does load balancing using hash function
CPU affinity is set to ensure we keep the cache line

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 38 / 54

Suricata workers mode

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 39 / 54

tpacket_v3 (2011)

The problem
Cell are fixed size
Size is the one of biggest packet (MTU)
Small packets use same memory as big one

Variable size cells
Ring buffer
Update memory mapping to enable variable sizes
Use a get pointer to next cell approach

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 40 / 54

Netmap (2012)

Similar approach than PF_RING
skip kernel path
put in ring buffer and discard

User access the ring buffer
Paired with network card ring

More info http://queue.acm.org/detail.cfm?id=2103536

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 42 / 54

http://queue.acm.org/detail.cfm?id=2103536

Performances

Table by Luigi Rizzo

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 43 / 54

AF_PACKET rollover option (2013)

Single intensive flow
Load balancing is flow based
One intensive flow saturate core capacity
Load needs to be shared

Principle
Move to next ring when ring is full
As a load balancing mode
As a fallback method

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 45 / 54

Rollover and suricata (1/2)

Graph by Victor Julien

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 46 / 54

Rollover and suricata (2/2)

A TCP streaming issue
Rollover activation lead to out of order packets
Fool TCP stream reconstruction by suricata
Result in invalid streams

Possible solution
Evolve autofop multicapture
Decode and dispatch packets

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 47 / 54

DPDK (2012-)

Data Plane Development Kit
set of libraries and driver
design for fast packet processing
impact on software architecture

Architecture
multicore framework
huge page memory
ring buffers
poll-mode drivers

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 48 / 54

Suricata workers mode limit

Packet treatment can be really long
Involve I/O on disk or network
Huge computation like regular expression

Ring buffers are limited in size
A slow packet can block a whole buffer
Suricata need to dequeue faster

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 50 / 54

Need to evolve Suricata architecture

Switch to asynchronous
Release ring buffer elements as fast as possible
Buffer in userspace

An enhanced autofp approach?
Fast decode
Copy data to packet pool of detect thread
With a fast decision
Release data

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 51 / 54

Conclusion (1/2)

A small subject and a huge evolution
Has follow evolution of hardware architecture
Always need to deal with more speed

10Gbps is common
100Gbps is in sight

Multiple technologies
Vanilla kernel propose some solutions
Patching may be required to do more

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 53 / 54

Conclusion (2/2)

Do you have questions ?

Contact me
Mail: eleblond@stamus-networks.com
Twitter: @Regiteric

More information
Suricata: http://www.suricata-ids.org
PF_RING: http://www.ntop.org/products/packet-capture/pf_ring/
netmap: http://info.iet.unipi.it/~luigi/netmap/
dpdk: http://dpdk.org/

Éric Leblond (Stamus Networks) Kernel packet capture technologies October 1, 2015 54 / 54

eleblond@stamus-networks.com
http://www.suricata-ids.org
http://www.ntop.org/products/packet-capture/pf_ring/
http://info.iet.unipi.it/~luigi/netmap/
http://dpdk.org/

	Introduction
	Why capture
	Libcap and raw socket
	AF_PACKET
	PF_RING
	AF_PACKET goes multi*
	Netmap
	Latest AF_PACKET evolution
	++zero copy
	Conclusion

