
Technical Advisor
Oracle Linux Development
2023-09-27

Matthew Wilcox

Kernel Recipes
Faster & Fewer Page Faults



The following is intended to outline our general product direction. It is intended for information 
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any 
material, code, or functionality, and should not be relied upon in making purchasing decisions. The 
development, release, timing, and pricing of any features or functionality described for Oracle’s 
products may change and remains at the sole discretion of Oracle Corporation.

Safe harbor statement

Copyright © 2023, Oracle and/or its affiliates2



Copyright © 2023, Oracle and/or its affiliates3

• Maple Tree
• Per-VMA Locking
• Large Folios
• New PTE manipulation interfaces

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html

Four projects

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html


Copyright © 2023, Oracle and/or its affiliates 4

• Your CPU is attempting to extract parallelism from your sequential code
• My 2.8GHz laptop CPU is able to issue 6 insn/clock

30 insn/5-cycle L1 cache hit
70 insn/14-cycle L2 cache hit
200 insn/40-cycle (14ns) L3 cache hit
1680 insn/100ns L3 cache miss

• Linked lists bottleneck on fetching the next entry in the list
• Arrays can be prefetched
• Walking a million-entry array is 12x faster than a million-entry list on my laptop

Linked Lists are Immoral



Copyright © 2023, Oracle and/or its affiliates 5

• Look up VMA (Virtual Memory Area) for virtual address
• Walk down the page tables
• If VMA is anonymous, allocate a page
• Otherwise, call VMA fault handler

- Fault handler may return a page or populate page table directly

• If page provided, insert entry into page table

Anatomy of a page fault



Copyright © 2023, Oracle and/or its affiliates6

• Maple Tree
• Per-VMA Locking
• Large Folios
• New PTE manipulation interfaces

Four projects



Copyright © 2023, Oracle and/or its affiliates 7

• VMAs were originally stored on a singly-linked list in 0.98 (1992)
• An AVL tree was added in 1.1.83 (1995)
• A Red-Black tree replaced the AVL tree in 2.4.9.11 (2001)
• A Maple Tree replaced the linked list & Red-Black tree in 6.1 (2022)

Looking up a VMA



Copyright © 2023, Oracle and/or its affiliates 8

• In-memory, RCU-safe B-tree for non-overlapping ranges
• Average branching factor of eight creates shallower trees (faster lookups)
• Modifications allocate memory (slower modifications)
• Applications typically have between 20 VMAs (cat) and 1000 (Mozilla)

- Can be millions in pathological cases (ElectricFence)

• RCU safety guarantees that a VMA which was present before the RCU lock was taken, and is still 
present after the RCU lock is released will be found.

Maple Tree



Copyright © 2023, Oracle and/or its affiliates9

• Maple Tree
• Per-VMA Locking
• Large Folios
• New PTE manipulation interfaces

Four projects



Copyright © 2023, Oracle and/or its affiliates 10

• Protected by a semaphore from 2.0.19 (1996)
• Changed to a read-write semaphore from 2.4.2.5 (2001)
• Added per-VMA read-write semaphores in 6.4 (2023)

VMA tree locking



Copyright © 2023, Oracle and/or its affiliates 11

• Take RCU read lock to prevent Maple tree nodes and VMAs from being freed
• Load VMA from Maple tree
• Read-trylock the per-VMA lock

- If write-locked, a writer is modifying this VMA.

• If MM seqcount is equal to VMA seqcount, VMA is locked
- This allows a writer to unlock all locked VMAs just by updating mm seqcount

• Drop RCU read lock; we will not look at the Maple Tree, and the VMA cannot be freed

Per-VMA locking lookup



Copyright © 2023, Oracle and/or its affiliates 12

• Anonymous VMAs handled from 6.4 on arm64, powerpc, s390, x86; 6.5 on riscv
• Swap and Userfaultfd support in 6.6
• In-core page cache VMAs support in 6.6
• DAX support in 6.6
• Page cache faults that need reads in 6.7?
• COW faults of page cache VMAs in 6.7?
• More support is possible, both architectures and types of memory

- Device drivers may rely on mmap_sem synchronisation
- HugeTLB faults have not yet been converted

Support for per-VMA locking



Copyright © 2023, Oracle and/or its affiliates13

• Maple Tree
• Per-VMA Locking
• Large Folios
• New PTE manipulation interfaces

Four projects



Copyright © 2023, Oracle and/or its affiliates 14

• XFS files can be buffered in larger chunks than PAGE_SIZE since 5.17 (2022)
- AFS since 6.0, EROFS since 6.2

• Large folios can be created on write() since 6.6
• Support for other filesystems & anonymous memory is in progress

Large Folios



Copyright © 2023, Oracle and/or its affiliates15

• Maple Tree
• Per-VMA Locking
• Large Folios
• New PTE manipulation interfaces

Four projects



Copyright © 2023, Oracle and/or its affiliates 16

• set_pte_at() could only insert a single Page Table Entry
• set_ptes() can insert n consecutive Page Table Entries pointing to contiguous pages
• flush_dcache_folio() flushes the entire folio from the data cache
• flush_icache_pages() flushes n consecutive pages from the instruction cache
• update_mmu_cache_range() acts on n consecutive pages

- Also tells the architecture which page was actually requested

New PTE manipulation interfaces



Copyright © 2023, Oracle and/or its affiliates 17

• Large Anonymous Folios
• Removing writepage()→
• Removing launder_folio()→
• Shrinking struct page
• Batched folio freeing
• bdev_getblk()

• ext2 directory handling
• folio_end_read()

• mrlock removal
• Converting buffer_heads to use folios
• Lockless page faults
• Removing GFP_NOFS
• struct ptdesc

Projects I Don’t Have Time To Talk About

• A better approach to the LRU list
• Block size > PAGE_SIZE
• Removing arch_make_page_accessible()
• Why kernel-doc is not my favourite
• Rewriting the swap subsystem
• Removing __GFP_COMP
• What does folio mapcount mean anyway?
• Replacing the XArray radix tree with the maple tree
• Converting HugeTLBfs to folios
• Making HugeTLBfs less special
• mshare
• Improving readahead for modern storage
• Support folios larger than PMD size



Copyright © 2023, Oracle and/or its affiliates 18

• Andrew Morton
• Darrick Wong
• Dave Chinner
• David Howells
• David Hildenbrand
• David Rientjes
• Davidlohr Bueso
• Greg Marsden
• Jan Kara
• Johannes Weiner
• Jon Corbet
• Kiryl Shutsemau

Thanks

• Laurent Dufour
• Liam Howlett
• Michal Hocko
• Michel Lespinasse
• Mike Kravetz
• Mike Rapoport
• Paul McKenney
• Ryan Roberts
• Song Liu
• Suren Baghdasaryan
• Vlastimil Babka
• Yin Fengwei




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

