Gaining bounds-checking on traili
arrays in the Upstream Linux Kernel

Gustavo A. R. Silva

gustavoars@kernel.org
fosstodon.org/@gustavoars

Supported by
The Linux Foundation & Google

Kernel Recipes 10" edition!!!
Sep 27, 2023
Paris, France

mailto:gustavoars@kernel.org
https://fosstodon.org/@gustavoars

Who am |?

Who am |?

* Upstream first — 7 years.
* Upstream Linux Kernel Engineer.
* Focused on security.

Who am |?

* Upstream first — 7 years.
* Upstream Linux Kernel Engineer.
* Focused on security.

» Kernel Self-Protection Project (KSPP).

* (Google Open Source Security Team
(GOSST).
* Linux Kernel division.

Agenda

* Introduction
- Arrays in C and The Land of Possibilities.
- Trailing arrays as Variable Length Objects (VLOSs).

- Flexible arrays and Flexible structures.
* Gaining bounds-checking on trailing arrays

- Ambiguous flexible-arrays declarations
- Problems and flexible-array transformations.
- Fortifled memcpy() and trailing arrays.
- The case of UAPI.
* Conclusions

Arrays in C and The Land of Possibllities

int happy_array[10];

Arrays in C and The Land of Possibllities

* Contiguously allocated objects of the same element type.

* We can iterate over it through indexes from O to N - 1, where N
IS the maximum number of elements in the array.

int happy_array[10];
iIndexes: [0-9]

Arrays in C and The Land of Possibllities

Contiguously allocated objects of the same element type.

We can iterate over it through indexes from O to N - 1, where N
IS the maximum number of elements in the array.

However, C doesn’t enforce array’s boundaries.

It's up to the developers to enforce them.

int happy_array[10];
iIndexes: [0-9]

Arrays in C and The Land of Possibllities

Contiguously allocated objects of the same element type.

We can iterate over it through indexes from O to N - 1, where N
IS the maximum number of elements in the array.

However, C doesn’t enforce array’s boundaries.
It's up to the developers to enforce them.

Otherwise, you arrive in The Land of Possibilities (a.k.a. UB).

int happy_array[10];
iIndexes: [0-9]

Arrays in C and The Land of Possibllities

miserable _array| -1]

Trailing arrays
Trailing arrays in the kernel
- Arrays declared at the end of a structure.

struct trailing {

some members;
int happy array[10];

Flexible arrays & flexible structures

Flexible arrays & flexible structures

- Flexible array
* Trailing array as Variable Length Object (VLO).
e Size Is determined at run-time.

Flexible arrays & flexible structures

- Flexible array
* Trailing array as Variable Length Object (VLO).
e Size Is determined at run-time.

- Flexible structure
 Structure that contains a flexible array.

struct flex struct {

size t count;
struct foo flex arrayl[];

Ambiguous flex-array declarations

Ambiguous flex-array declarations

Fake flexible arrays.
- One-element arrays (buggy hack).
- Zero-length arrays (GNU extension).

Ambiguous flex-array declarations

Fake flexible arrays.
- One-element arrays (buggy hack).
- Zero-length arrays (GNU extension).

struct fake flex 1 { struct fake_flex 0 {
éiée_t count; size_t count;
struct foo fake flex[1]; struct foo fake_flex[0];

}i }i

Ambiguous flex-array declarations

True flexible arrays.
- “Modern” C99 flexible-array member.

Ambiguous flex-array declarations

True flexible arrays.
- “Modern” C99 flexible-array member.
- The last member of an otherwise non-empty structure.

struct flex struct {

size t count;
struct foo flex arrayl[];

}i

Problems with fake flexible arrays

* Three different ways to declare a Variable Length Object (VLO).

Problems with 1-element arrays

- Prone to off-by-one problems.

- Always “contribute” with size-of-one-element to the size of
the enclosing structure.

— Developers have to remember to subtract 1 from count, or
(struct foo) from (struct fake flex 1).

struct fake flex 1 {

éiée_t count;
struct foo fake flex[1l];
} *p; -

alloc_size = (*p) + (struct foo) * (count — 1);
p = kmalloc(alloc size, GFP KERNEL)
p->count = count;

Problems with 1-element arrays
* -Warray-bounds false positives.

struct fake flex 1 {

size t count;
struct foo fake flex[1];
} *p; -

(1= 0; i < 10; i++)
p->fake flex[i] = thing;

Problems with 1-element arrays

* -Warray-bounds false positives.

struct fake flex 1 {

size t count;
struct foo fake flex[1];
} *p; -

(1= 0; i < 10; i++)
p->fake flex[i] = thing;

0 1s fine
1 i1s not :/

D)

Problems with 1-element arrays
* -Warray-bounds false positives.

struct fake flex 1 {

size t count;
struct foo fake flex[1];
} *p; -

(1= 0; i<10; i++) i==0 is fine)
p->fake flex[i] = thing; 1>= 1 1is not :/

warning: array subscript 1 is above array bounds of
‘struct foo[1]' [-Warray-bounds]

GNU extension: 0-length arrays
* Not part of the C standard.

They don’t contribute to the size of the flex struct.

Slightly less buggy, but still...

Be aware of (p->fake_flex) ==

struct fake flex 0 {

size t count;
struct foo fake flex[0]:
} *p; -

alloc size = (*p) + (struct foo) * count;
p = kmalloc(alloc size, GFP KERNEL)
p->count = count;

The Land of Possibilities
Undefined Behavior

The Land of Possibllities
Undefined Behavior — The bug

- e48f129c2f20 ("[SCSI] cxgb3i: convert cdev->I20pt to use..

struct 12t data {

unsigned int nentries;
struct 12t entry *rover;
atomic t nfree;

rwlock t lock;

struct 12t _entry 12tab[0];
struct rcu_head rcu_head;

“ +

9

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e48f129c2f20

The Land of Possibllities
Undefined Behavior — The bug

- e48f129c2f20 ("[SCSI] cxgb3i: convert cdev->I20pt to use..

— Compilers cannot detect dangerous code like this.

struct 12t data {

unsigned int nentries;
struct 12t entry *rover;
atomic t nfree;

rwlock t lock;

struct 12t _entry 12tab[0];
struct rcu_head rcu_head;

“ +

y

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e48f129c2f20

The Land of Possibilities
Undefined Behavior — The fix
- 76497732932f ("cxgb3/I2t: Fix undefined behavior")

struct 12t data {

“ +

unsigned int nentries;
struct 12t entry *rover;
atomic t nfree;

rwlock t lock;

struct 12t _entry 12tab[0];
struct rcu head rcu head;
struct 12t _entry 12tabl];

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76497732932f

The Land of Possibilities
Undefined Behavior — The fix
- 76497732932f ("cxgb3/12t: Fix undefined behavior")
- Kick-off of flexible array transformations in the KSPP.

struct 12t data {
unsigned int nentries;
struct 12t entry *rover;
atomic t nfree;
rwlock t lock;
- struct 12t _entry 12tab[0];
struct rcu head rcu head;
struct 12t _entry 12tabl];

“ +

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76497732932f

The Land of Possibilities
Undefined Behavior - The fix
- 76497732932f ("cxgb3/I2t: Fix undefined behavior")
- Kick-off of flexible array transformations in the KSPP.
— Bug introduced in 2011. Fixed in 2019.

struct 12t data {
unsigned int nentries;
struct 12t entry *rover;
atomic t nfree;
rwlock t lock;
- struct 12t _entry 12tab[0];
struct rcu head rcu head;
struct 12t _entry 12tabl];

“ +

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76497732932f

The Land of Possibilities
Undefined Behavior - The bug

- f5823fe6897c ("ged: Add lI2 option to limit the number of bds
per packet")

#define ETH_TX_MAX_BDS_PER_NON_LSO_PACKET 18
struct qed_112_tx_packet {

+ /* Flexible Array of bds set determined by max_bds per packet */
struct {
struct core tx bd *txq bd;
dma addr t tx frag;
ulé frag len;
- } bds set[ETH_TX MAX BDS_ PER NON LSO PACKET];
+ } bds set[l];

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

The Land of Possibilities
Undefined Behavior - The bug

- f5823fe6897c ("ged: Add lI2 option to limit the number of bds
per packet")

- Fake flex-array transformation.

#define ETH_TX_MAX_BDS_PER_NON_LSO_PACKET 18
struct qed_112_tx_packet {

+ /* Flexible Array of bds set determined by max_bds per packet */
struct {
struct core tx bd *txq bd;
dma addr t tx frag;
ulé frag len;
- } bds _set[ETH _TX MAX BDS PER NON LSO PACKET];
+ } bds set[l];

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

The Land of Possibilities
Undefined Behavior — The bug

- f5823fe6897c ("ged: Add lI2 option to limit the number of bds
per packet")

- Now there is a 1-element array nested in the middle of struct
ged_lI2_tx_queue

struct ged L12 tx queue {

- struct qed L12 tx packet *descq array;

+ void *descq mem; /* memory for variable sized qed 112 tx packet*/
struct ged 112 tx packet *cur send packet;
struct ged 112_tx_packet cur_completing packet;

ulé cur completing frag num;
bool b completing packet;
¥

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

The Land of Possibilities
Undefined Behavior — The fix

- a93b6a2b9f46 ("ged/red _lI2: Replace one-element array
with flexible ... ")

struct ged 112 tx packet { struct ged_l12_tx_queue {
struct core_tx_bd *txq bd; . struct ged _112_tx_packet cur_completing_packet;
dma_addr_t tx frag;
ule frag len;

- } bds set[1l]; -

+ } bds_set[]; + struct qed_112_tx_packet cur_completing packet;

};

ul6 cur completing frag num;
bool b completing packet;

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a93b6a2b9f46

The Land of Possibilities
Undefined Behavior — The fix

- a93b6a2b9f46 ("ged/red _lI2: Replace one-element array
with flexible ... ")

— Bug introduced in 2017. Fixed in 2020.

struct ged 112 tx packet { struct ged_l12_tx_queue {
struct core_tx_bd *txq_bd; . struct ged 112 tx packet cur completing packet;
dma_addr_t tx frag;
ule frag len;

- } bds set[1l]; -

+ } bds set[]; + struct qed 112 _tx packet cur_completing packet;

};

ul6 cur completing frag num;
bool b completing packet;

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a93b6a2b9f46

Then something happened on Saturday...

$ git grep -nwW 'struct\sged_lI12_tx_queue’

$ git grep -nwW 'struct\sqed_I12_tx_queue'

struct gqed 112 info {

struct ged 112 tx queue tx_queue;
struct ged 112 cbs cbs;
i

$ git grep -nwW 'struct\sqged_lI12_tx_queue’

struct ged 112 info {

é%%uct ged 112 tx queue {
struct ged L2 _info { é%%uct ged 112 tx packet {
struct {
struct ged Ll2 tx queue tx queue; 3;;“;5dﬁi;e¥§i¥gggttxq—bd;

). struct ged 112 cbs cbs; 416 frag len;
’ } bds_set[];
s
¥
struct qed 112 cbs cbs;
i

$ git grep -nwW 'struct\sqged_lI12_tx_queue’
Undefined Behavior — The bug

struct ged 112 info {

é%%uct ged 112 tx queue {
struct ged L2 _info { é%%uct ged 112 tx packet {
struct {
struct ged Ll2 tx queue tx queue; 3;;“;5dﬁi;e¥§i¥gggttxq—bd;

). struct ged 112 cbs cbs; 416 frag len;
’ } bds_set[];
s
¥
struct qed 112 cbs cbs;
i

$ git grep -nwW 'struct\sqged_lI12_tx_queue’
Undefined Behavior - The bug

— Structure full of function pointers.

struct ged 112 cbs {

ged 112 complete rx packet cb rx comp cb;
ged 112 release rx packet cb rx release cb;
ged 112 complete tx packet cb tx comp cb;
ged 112 release tx packet cb tx release cb;
ged 112 slowpath cb slowpath cb;

void *cookie;

$ git grep -nwW 'struct\sqged_lI12_tx_queue’
Undefined Behavior - The fix
— https://lore.kernel.org/linux-hardening/ZQ+Nz8DfPg56plzr@work/

struct ged 112 info { struct ged 112 info {

+ struct ged 112 cbs cbs;
struct ged 112 rx queue rx gueue;

struct ged 112 tx queue tx queue; struct qed_Ll12_tx_queue tx_queue;
struct ged 112 cbs cbs; - struct ged_l12_cbs cbs;

}i }i

https://lore.kernel.org/linux-hardening/ZQ+Nz8DfPg56pIzr@work/

$ git grep -nwW 'struct\sqged_lI12_tx_queue’
Undefined Behavior - The fix

— https://lore.kernel.org/linux-hardening/ZQ+Nz8DfPg56plzr@work/
- Bug introduced in 2017. Fixed in 2023.

- Will appear in mainline, soon.

struct qed 112 info {

+ struct ged 112 cbs cbs;
struct ged l1l2 rx queue rx queue;
struct ged 112 tx queue tx queue;
- struct ged 112 chs cbs;

}

https://lore.kernel.org/linux-hardening/ZQ+Nz8DfPg56pIzr@work/

“Nice find! Was this located with
-Wflex-array-member-not-at-end ?”

-Kees Cook

https://lore.kernel.org/linux-hardening/94131E7C-BC22-423B-8B05-234BB2EO9EFD @kernel.org/

https://lore.kernel.org/linux-hardening/94131E7C-BC22-423B-8B05-234BB2E09EFD@kernel.org/

-Wflex-array-member-not-at-end

GCC new compiler option (coming soon in GCC 14).
* https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614794 . .html
* https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614793.html
e https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614790.html

“A structure or a union with a C99 flexible array member is the

middle field of another structure, for example:

struct flex { int length; char data[]; };

struct mid_flex { int m; struct flex flex_data; int n; };
In the above, 'mid_flex.flex_ _data.data[]' has undefined behavior.
Compilers do not handle such case consistently, Any code relying on
such case should be modified to ensure that flexible array members
only end up at the ends of structures.
Please use warning option '-Wflex-array-member-not-at-end' to
identify all such cases in the source code and modify them. This
warning will be on by default starting from GCC 14."

-Qing Zhao

https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614794.html
https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614793.html
https://gcc.gnu.org/pipermail/gcc-patches/2023-March/614790.html

-Wflex-array-member-not-at-end
GCC new compiler option (coming soon in GCC 14)
- 59,056 warnings in Linux next-20230518.

@ Gustavo A. R. Silva @embeddedgus - May 18
-Wflex-array-member-not-at-end (GCC) is coming to Linux, soon . OW

Just 59,056 warnings in Linux next-20230518 & Fortunately, only_650
are unique. &

Kernel Self-Protection Project

-

https://x.com/embeddedgus/status/1659295624259334149?s=20

-Wflex-array-member-not-at-end

GCC new compiler option (coming soon in GCC 14)
- 59,056 warnings in Linux next-20230518.

- Fortunately, only 650 are unique.

@ Gustavo A. R. Silva @embeddedgus - May 18
-Wflex-array-member-not-at-end (GCC) is coming to Linux, soon . OW

Just 59,056 warnings in Linux next-20230518 & Fortunately, only_650
are unique. &

Kernel Self-Protection Project

-

https://x.com/embeddedgus/status/1659295624259334149?s=20

So | went and took a look at my build logs from
that time...

-Wflex-array-member-not-at-end
GCC new compiler option (coming soon in GCC 14)
- It works!

drivers/net/ethernet/qlogic/qed/ged 112.h:

100 struct ged 112 info {

114 struct ged 112 tx queue tx queue;
115 struct ged 112 cbs cbs;
116 };

In file included from drivers/net/ethernet/qlogic/qed/ged_dev.c:33:
drivers/net/ethernet/qlogic/ged/ged_112.h:114:33: warning: structure
containing a flexible array member is not at the end of another structure
[-Wflex-array-member-not-at-end]

114 | struct ged_112_tx_queue tx_queue;
| A e e e e

Problems with ambiguous flexible-array variants
* The Tale of sizeof() & the Three Trailing Arrays.

Problems with ambiguous flexible-array variants
* The Tale of sizeof() & the Three Trailing Arrays.

(flex struct->one element array) == size-of-element-type

Problems with ambiguous flexible-array variants
* The Tale of sizeof() & the Three Trailing Arrays.

(flex struct->one element array) == size-of-element-type

(flex struct->zero length array) == 0

Problems with ambiguous flexible-array variants
* The Tale of sizeof() & the Three Trailing Arrays.

(flex struct->one element array)
(flex struct->zero length array)

(flex struct->flex array member)

size-of-element-type
0

? /* Build error */

Problems with ambiguous flexible-array variants
* The Tale of sizeof() & the Three Trailing Arrays.

- () returns different results.

- And that’s another source of problems.

— Found multiple issues in the kernel.

(flex struct->one element array) == size-of-element-type
(flex struct->zero length array) == 0

(flex struct->flex array member) == ? /* Build error */

Problems with ambiguous flexible-array variants

Ambiguity is the enemy.

Gaining bounds-checking on trailing arrays

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

Gaining bounds-checking on trailing arrays

Hardening memcpy() and flexible-array transformations
- Common use of memcpy() and flex arrays.

struct flex struct {
size t count;

struct foo flex arrayl[];
P otp;

memcpy (p->flex_array, &source, SOME SIZE);

Gaining bounds-checking on trailing arrays

Hardening memcpy() and flexible-array transformations

— __ builtin_object_size() was used to determine the size of
both source and destination.

- Under CONFIG_FORTIFY_SOURCE=y

void *memcpy(void *dst, const void *src, size t size)

__builtin object size(dst, 1);
__builtin_object_size(src, 1);

size t dst_size =
size t src_size =
(_ builtin constant p(size)) { /* Compile-time */

(dst_size < size)

__write overflow();

(src_size < size)

__read overflow2();

Gaining bounds-checking on trailing arrays

Hardening memcpy() and flexible-array transformations

— __ builtin_object_size() was used to determine the size of
both source and destination.

- Under CONFIG_FORTIFY_SOURCE=y

void *memcpy(void *dst, const void *src, size t size)

__builtin object size(dst, 1);
__builtin_object_size(src, 1);

size t dst_size =
size t src_size =
(_ builtin constant p(size)) { /* Compile-time */

(dst_size < size)

__write overflow();

(src_size < size)

__read overflow2();

Gaining bounds-checking on trailing arrays

Hardening memcpy() and flexible-array transformations
- Common use of memcpy() and flex arrays.

struct flex struct {
size t count;

struct foo flex arrayl[];
}orp;

memcpy (p->flex_array, &source, SOME SIZE);

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

memcpy (p->flex_array, &source, SOME SIZE);
void *memcpy(void *dst, const void *src, size t size)
size t dst_size = _ builtin object size(dst, 1);
.(__builtin_constant_p(size)) { /* Compile-time */

(dst _size < size)
__write overflow();

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

memcpy (p->flex_array, &source, SOME SIZE);

void *memcpy(void *dst, const void *src, size t size)

{
size t dst_size = _ builtin object size(dst, 1);
(builtin constant p(size)) { /* Compile-time */
(dst _size < size)
__write overflow();
}
}

__builtin _object _size(p->flex array, 1) == -1 /* flex-array size? */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

builtin object size(flex struct->flex array member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 if cannot determine the size of the object.

builtin object size(flex struct->flex array member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 if cannot determine the size of the object.

__builtin object size(flex struct->flex array member, 1) ==

The size of a flexible-array member
cannot be determined -- it’s an object
of incomplete type.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 if cannot determine the size of the object.

* The size of a flexible-array member cannot be
determined (it’s an object of incomplete type).

OK; but, what about fake flexible arrays?
Those do have a size.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element _array, 1) ==

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element _array, 1) ==

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element array, 1) == -1

__builtin object size(flex struct->zero_length_array, 1) ==

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element _array, 1) ==

__builtin object size(flex struct->zero_length_array, 1) ==

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element array, 1) == -1
__builtin object size(flex struct->zero_length _array, 1) == -1

~ _builtin object size(flex struct->flex array member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

__builtin object size(flex struct->one_element array, 1) == -1
__builtin object size(flex struct->zero_length _array, 1) == -1
~ _builtin object size(flex struct->flex array member, 1) == -1

It’s not able to reason about the size of the
fake flex arrays either. Returns -1 for all three
cases.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 for all three cases.
* It doesn’t know the size of the fake flex arrays either.

~ _builtin object size(flex struct->one_element_array, 1) == -1

__builtin object size(flex struct->zero_length array, 1) == -1

~ _builtin object size(flex struct->flex array member, 1) == -1
(flex struct->one element array) == size-of-element-type
(flex struct->zero length array) == 0

(flex struct->flex array member) == ? /* Error */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 for all three cases.
* It doesn’t know the size of the fake flex arrays either.
* ADbit confusing, isn’t it?

__builtin object size(flex struct->one _element_array, 1) == -1

__builtin object size(flex struct->zero_length array, 1) == -1

~_builtin object size(flex struct->flex array member, 1) == -1
(flex struct->one element array) == size-of-element-type
(flex struct->zero length array) == 0

(flex struct->flex array member) == ? /* Error */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 for all three cases.
* It doesn’t know the size of the fake flex arrays either.
* ADbit confusing, isn’t it?

__builtin object size(flex struct->one_element_array, 1) == -1
~_builtin object size(flex struct->zero_length _array, 1) == -1
~_builtin object size(flex struct->flex array member, 1) == -1
(flex struct->one element array) == size-of-element-type
(flex struct->zero length array) == 0
(flex struct->flex array member) == ? /* Error */

__builtin object size(any_struct->any_trailing_array, 1) ==

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

— __builtin_object_size() and flexible arrays
* Returns -1 for all three cases.
* It doesn’t know the size of the fake flex arrays either.
* ADbit confusing, isn’t it?

__builtin object size(flex struct->one_element_array, 1) == -1
~_builtin object size(flex struct->zero_length _array, 1) == -1
~_builtin object size(flex struct->flex array member, 1) == -1
(flex struct->one element array) == size-of-element-type
(flex struct->zero length array) == 0
(flex struct->flex array member) == ? /* Error */

__builtin object size(any struct->any trailing _array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

What is going on?!

__builtin object size(any_struct->any_trailing_array, 1) == -

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

In this scenario memcpy/() is not able to
sanity-check trailing arrays at all.

__builtin object size(any_struct->any_trailing_array, 1) == -

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

A case for:
“Go fix the compiler!”

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

But why, exactly?

__builtin object size(any_struct->any_trailing_array, 1) == -

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays

- BSD sockaddr (sys/socket.h)

* char sa_data[14]
» #define SOCK_MAXADDRLEN 255

/*

* Structure used by kernel to store most

* addresses.
*/
struct sockaddr {
unsigned char
sa family t
char
}i
#define SOCK_MAXADDRLEN

sa len;
sa family;
sa datal[l4];

255

/*
/>I<
/>I<

/>|<

total length */
address family */
actually longer; address value */

longest possible addresses */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— __builtin_object_size() and flexible arrays
- https://reviews.llvm.org/D126864

“Some code consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
t81632498307d22e10fab0704548b270b15flele but it prevents evaluation of
builtin_object_size and builtin_dynamic_object size in some legit cases.”

https://reviews.llvm.org/D126864

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
— _ builtin_object_size() and flex arrays.

So, what do we do?

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

- Kernel: Make flexible-array declarations unambiguous.
* Getrid of fake flexible arrays.

* Only C99 flexible-array members should be used as
flexible arrays.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

- Kernel: Make flexible-array declarations unambiguous.
* Getrid of fake flexible arrays.

* Only C99 flexible-array members should be used as
flexible arrays.

- Compiler: Fix it.
* Fix __ builtin_object_size()
* Add new option -fstrict-flex-arrays[=n]

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=0 (default)

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=0 (default)
* All trailing arrays are treated as flex arrays.

__builtin object size(any_struct->any_trailing_array, 1) == -

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=0 (default)
* All trailing arrays are treated as flex arrays.

__builtin object size(any_struct->any_trailing_array, 1) == -

Everything remains the same.

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=1
* Only [1], [0] and [] are treated as flex arrays.

__builtin object size(flex struct->one_element_array, 1) == -1
~ builtin object size(flex struct->zero length array, 1) == -1
~ builtin object size(flex struct->flex _array member, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=1
* Only [1], [0] and [] are treated as flex arrays.

__builtin object size(flex struct->one_element_array, 1) == -1
~ builtin object size(flex struct->zero length array, 1) == -1
~ builtin object size(flex struct->flex _array member, 1) == -1

Now fixed-size trailing arrays (except [1] &
[0], of course) gain bounds-checking. :)

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=2

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=2
 Only [0] and [] are treated as flex arrays.

__builtin object size(flex struct->zero_length array, 1) == -1
__builtin object size(flex struct->flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=2
 Only [0] and [] are treated as flex arrays.

__builtin object size(flex struct->zero_length array, 1) == -1
__builtin object size(flex struct->flex_array_member, 1) == -1

Now fixed-size trailing arrays (except [0], of
course) gain bounds-checking. :)

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

Now what's left to be resolved Is the case for
zero-length arrays.

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

Now what's left to be resolved Is the case for
zero-length arrays.

Could that probably be resolved with
-fstrict-flex-arrays=3 ? Maybe?

Gaining bounds-checking on trailing arrays
* The case of Clang vs -fstrict-flex-arrays=3

Gaining bounds-checking on trailing arrays

* The case of Clang vs -fstrict-flex-arrays=3
- -Wzero-length-array (thousands of warnings, as usual)
- 0O-length arrays are not only used as fake flex-arrays.
— They are used as markers in structs.

— Under certain configurations some arrays end up having a size
Zero.

Gaining bounds-checking on trailing arrays

* The case of Clang vs -fstrict-flex-arrays=3
- -Wzero-length-array (thousands of warnings, as usual)
- 0O-length arrays are not only used as fake flex-arrays.
— They are used as markers in structs.

— Under certain configurations some arrays end up having a size
Zero.

- So, 0-length arrays are here to stay, but not as VLOs.

Gaining bounds-checking on trailing arrays
* The case of Clang vs -fstrict-flex-arrays=3

-Wzero-length-array (thousands of warnings, as usual)
O-length arrays are not only used as fake flex-arrays.
They are used as markers in structs.

Under certain configurations some arrays end up having a size
Zero.

So, 0-length arrays are here to stay, but not as VLOs.

Fortunately, that issue is now resolved. :)

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.
- -fstrict-flex-arrays=3
* Only C99 flexible-array members ([]) are treated VLOs.

__builtin object size(flex struct->flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=3
* Only C99 flexible-array members ([]) are treated VLOs.

__builtin object size(flex struct->flex_array_member, 1) == -1

Now ALL trailing arrays of fixed-size gain
bounds-checking. :D

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] — Supported in GCC-13 and Clang-16.

- -fstrict-flex-arrays=3
* Only C99 flexible-array members ([]) are treated VLOs.

~_builtin object size(flex struct->flex_array_member, 1) == -

Now ALL trailing arrays of fixed-size gain
bounds-checking. :D

This Is what we want!

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

When will we have nice things?

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

— Globally enabled in Linux 6.5. Yeeiii!!

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

- Globally enabled in Linux 6.5. Yeeiil!! Mega yeeilii!!

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
- Globally enabled in Linux 6.5. Yeeiil!! Mega yeeilii!!

- CONFIG_UBSAN_ BOUNDS and CONFIG_FORTIFY_ _SOURCE
benefit from this.

- Only C99 flexible-array members are considered to be
dynamically sized.

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
- Globally enabled in Linux 6.5. Yeeiil!! Mega yeeilii!!

- CONFIG_UBSAN_ BOUNDS and CONFIG_FORTIFY_ _SOURCE
benefit from this.

- Only C99 flexible-array members are considered to be
dynamically sized.

- Therefore, we’ve gained bounds-checking on trailing arrays
of fixed-size.

Gaining bounds-checking on trailing arrays

Great, but what about bounds-checking
on flexible-array members?

Gaining bounds-checking on trailing arrays
We need a new attribute

Gaining bounds-checking on trailing arrays
We need a new attribute

- How about __ attribute ((__counted_by (member))) ?

struct bounded flex struct {

size t elements;
struct foo array[] attribute ((counted by(elements)));

}i

Gaining bounds-checking on trailing arrays
We need a new attribute
- How about __ attribute ((__counted_by (member))) ?
— Coming soon in GCC-14 and Clang-18

#1f has attribute(__counted by)

define _ counted by(member) attribute ((__counted by (member)))
#else

define __ counted by (member)

#endif

Gaining bounds-checking on trailing arrays
We need a new attribute
- How about __ attribute_ ((__counted_by__(member))) ?
— Coming soon in GCC-14 and Clang-18

struct bounded flex struct {

size t elements;
struct foo array[] counted by(elements);

}i

“Hey! but you said that memcpy() WAS internally
using __ builtin_object_size()?”

Gaining bounds-checking on trailing arrays
Fortified memcpy() and __ builtin_dynamic_object_size()

Gaining bounds-checking on trailing arrays
Fortified memcpy() and __ builtin_dynamic_object_size()
— _ bdos() replaced _ builtin_object_size()

- __bdos() adds run-time coverage whereas bos() only
covers compile-time.

- It gets hints from __alloc_size and from __ counted by()
- Greater fortification for memcpy().

The case of UAPI

The case of UAPI

One-element arrays in UAPI — First attempts.
— Duplicate the original struct within a union.

- Flexible-array will be used by kernel-space.
- One-element array will be used by user-space.

struct ip_msfilter {

- __be32 imsf_multiaddr;

- __be32 imsf_interface;

- __u32 imsf_fmode;

- _u32 imsf_numsrc;

- __be32 imsf_slist[1];

+ union {

+ struct {

+ __be32 imsf_multiaddr_aux;
+ __be32 imsf_interface_aux;
+ __u32 imsf_fmode_aux;

+ _u32 imsf_numsrc_aux;

+ __be32 imsf slist[1];

+ Y

+ struct {

+ __be32 imsf_multiaddr;

+ __be32 imsf_interface;

+ __u32 imsf_fmode;

+ __u32 imsf_numsrc;

+ __be32 imsf_slist_flex[];
+ Y

+ b

The case of UAPI

One-element arrays in UAPI — Better code.
- Just use the _ DECLARE_FLEX_ARRAY() helper in a union.

struct ip msfilter {

~ be32
_ be32
. u32
~u32
union {

}i

imsf multiaddr;
imsf interface;
imsf fmode;
imsf numsrc;

__be32 imsf_slist[1];
__DECLARE_FLEX_ARRAY(be32, imsf_slist_flex);

The case of UAPI

One-element arrays in UAPI — Better code.
- Just use the _ DECLARE_FLEX_ARRAY() helper in a union.
- The bad news is that the sizeof(flex_struct) will remain the

sSame.
struct ip msfilter {
~ be32 imsf multiaddr;
_ be32 imsf interface;
. u32 imsf fmode;
. u32 imsf numsrc;
union {
be32 imsf slist[1];

__ DECLARE_FLEX_ARRAY(be32, imsf slist flex);
}i

Conclusions

Conclusions

* -fstrict-flex-arrays=3 enabled in Linux 6.5

« _ counted_by() attribute is just around the corner. :D

 _ builtin_dynamic_object_size() increased bounds-checking
coverage.

* FORTIFY_SOURCE and UBSAN bounds-checking better every
time.

* Vulnerabillities discovered over the last years could’ve been
prevented with the most recent memcpy() and
FORTIFY_SOURCE updates.

* We've been finding and fixing bugs in both kernel-space and user-
space.

* The security of the kernel is being significantly improved. :)

Conclusions

. Next: Replace DECLARE_FLEX_ARRAY() with
DECLARE_BOUNDED_ARRAY():

struct ip msfilter {

~u32 imsf numsrc;

union {
_ be32 imsf slist[1];
__DECLARE_FLEX_ARRAY(be32, imsf slist flex);

b
struct ip msfilter {

~u32 imsf numsrc;
union {

_ be32 imsf_slist[1];

__DECLARE_BOUNDED ARRAY(be32, imsf slist flex, imsf_numsrc);
3

Conclusions

 Next: __ counted_by() on pointers should be possible.
struct foo {
hhgigned char items;

int *data _ counted by(items);

Conclusions

 Next: __ counted_by() on pointers should be possible.

struct foo {
unsigned char items;

int *data _ counted by(items);

* Next: -Wflex-array-member-not-at-end has proved to catch bugs.

Thank you!)

Gustavo A. R. Silva

gustavoars@kernel.org
fosstodon.org/@gqgustavoars

mailto:gustavoars@kernel.org
https://fosstodon.org/@gustavoars

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

