
 1

The Kernel Self-Protection Project and
how you can help

Gustavo A. R. Silva
gustavoars@kernel.org

@embeddedgus

Supported by The Linux Foundation &
Google

Kernel Recipes
June 2, 2022
Paris, France

mailto:gustavoars@kernel.org
https://twitter.com/embeddedgus

Who am I?

● Embedded Systems.
● RTOS & Embedded Linux.
● Upstream first – 6 years.
● Kernel developer & maintainer.
● GOSST - Linux kernel division.
● Volunteer at @kidsoncomputers

https://twitter.com/kidsoncomputers

Who am I?

● Embedded Systems.
● RTOS & Embedded Linux.
● Upstream first – 6 years.
● Kernel developer & maintainer.
● GOSST - Linux kernel division.
● Volunteer at @kidsoncomputers

“Tuxote”

https://twitter.com/kidsoncomputers

Agenda

● The Kernel Self-Protection Project
● Work in progress and some accomplishments.
● How you can help. :)
● Conclusions.

The Kernel Self-Protection Project

The Kernel Self-Protection Project

● It’s an upstream project. Not a random downstream clone of
Linux.

● Focused on hardening the upstream Linux kernel.

● We want to eliminate entire bug classes and methods of
exploitation.

● Developing of defense mechanisms that cut off whole classes
of vulnerabilities. Best way to approach the problem of security.

● Moving the codebase to use safer APIs.

● Not about writing CVEs.

Tools and Platforms

linux-hardening

● Upstream mailing list. Created in 2020.

● Needed a list to discuss development, maintenance and all
things related.

● Old list (kernel-hardening) only wanted new stuff.

● A place to discuss about all the small details and middle steps
in the process of hardening the kernel was needed.

● linux-hardening@vger.kernel.org
● https://lore.kernel.org/linux-hardening/202009281907.946FBE7B@keescook/

mailto:linux-hardening@vger.kernel.org
https://lore.kernel.org/linux-hardening/202009281907.946FBE7B@keescook/

Patchwork

● Keep track of tags: Reviewed-by, Tested-by, Acked-by, etc.

● The KSPP is not a subsystem, but it has maintainers. :P

● Sometimes work gets stuck and patches are not applied -for a
number of reasons.

● Patches are sometimes ignored.

● Don’t want to miss patches from occasional contributors.

● Helpful to follow up on all patches sent to the linux-hardening
list, so we can carry them on our -next trees when needed.

● https://patchwork.kernel.org/project/linux-hardening/

https://patchwork.kernel.org/project/linux-hardening/

Issue tracker

● Issues show up while addressing other… issues.

● Sound familiar? :)

● Sometimes we need to document stuff before it’s included in
the official documentation.

● We have good first issues. :)

● https://github.com/KSPP/linux/issues

https://github.com/KSPP/linux/issues

● “I pulled and then immediately unpulled again.”

– Linus Torvalds.

● "There is never too much information you can put in a merge
commit. Put what you ate on breakfast. Put everything in
there."

– David Miller. #netconf2019

● Linus doesn’t care what you had for breakfast. :/

● Linus doesn’t care what you had for breakfast. :/

● But Dave does. Thanks Dave. :)

Coverity

● Not actually for kernel hardening, but it’s a good tool for new
people.

● Public.

● Should be named linux-next-daily-scan.

● Daily scans for linux-next.

● Kees runs daily builds on his beefy machine.

● Good place to start for newcomers. Send a request for
access. :)

● https://scan.coverity.com/projects/linux-next-weekly-scan/

https://scan.coverity.com/projects/linux-next-weekly-scan/

Coccinelle

● We use it frequently.

● Not a magical solution for all we need to fix or change.

● Code still should be audited. :)

● https://coccinelle.gitlabpages.inria.fr/website/

https://coccinelle.gitlabpages.inria.fr/website/

Coccinelle

● https://git.kernel.org/linus/5224f79096170bf7b92cc8fe42a12f44b91e5f62

https://git.kernel.org/linus/5224f79096170bf7b92cc8fe42a12f44b91e5f62

Coccinelle

● Potential struct_size() transformations. All should be
audited.

Kernel Test Robot

● Build-tests for multiple archs and configurations. GCC and
Clang.

● Results usually within 24 hours.

● Need to ask for your tree to be added to their test suite.

● Private and public reports. Depending on your preferences.

● Our test reports are publicly available on LKML.

● For complex changes I usually include a Build-tested-by tag
with a link to the results.

● Kernel Test Robot <lkp@intel.com>

mailto:lkp@intel.com

Kernel Test Robot

● https://lore.kernel.org/lkml/627f92ef.upN0G+bCpHComWxr%25lkp@intel.com/

https://lore.kernel.org/lkml/627f92ef.upN0G+bCpHComWxr%25lkp@intel.com/

IRC channels and wiki

● Wanna hang out? :)

● #linux-hardening

● #clangbuiltlinux

● Libera.Chat

● https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

https://libera.chat/
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

What does it take to harden the kernel?

What does it take to harden the kernel?

● Sweat and blood!

What does it take to harden the kernel?

● Sweat and blood!

● Really!

What does it take to harden the kernel?

● KSPP is about hardening the Linux kernel.

● The goals are big.

● It’s usually not as glamorous as people would think.

● Auditing code is exhausting and time consuming.

● We need to develop some strategies.

● Make the compiler an ally.

What does it take to harden the kernel?

● Enabling compiler options is an important step forward.

● Provide the compiler with enough context.

● Detect as many problems as possible at build-time.

● Enabling compiler options is not that straightforward.

● Upstream has its implications. Who would’ve thought? :p

● Need to solve both technical and political problems.

What does it take to harden the kernel?

● Political issues tend to delay the work.

● Some people really dislike some changes.

● We need to convince people.

● People have different opinions about security changes across
the whole kernel tree.

● Fortunately, some people really support the project.

What does it take to harden the kernel?

● A lot of middle steps need to land in order to complete
important work.

● Clean ups and mechanical changes.

● Some are easy to implement, but hard to have them applied
upstream.

● Maintainers usually don’t like a mechanical change happen
external to their tree.

● Avoid friction.

Enabling compiler options

Enabling compiler options

● Why is it a complex task?

● Usually tons of warnings. :)

● “The noisy thing.”

● Some actual bugs, some false positives.

● Both are worth resolving.

● Some of those warnings lead us to find corner cases in both
kernel code and the compiler.

Enabling compiler options

● Maybe we need to change the narrative a little bit.

● Small (although not simple) task are usually seen as noisy and
code churn.

● Accomplishing important things require to pay attention to
small details, first.

● The 99-1 rule. 99% perspiration/frustration, 1%
inspiration/innovation.

● Improving the quality and maintainability of the code allows
for trying to implement more complex stuff.

Work in progress and some
accomplishments

● struct_group()

● Flexible array transformations.

● -Warray-bounds

● memcpy() hardening and the compound effect.

struct_group()

● Wrap a set of declarations in a mirrored struct.

● Group adjacent members in a struct to be accessed together.
Usually through memcpy() or memset().

● Update to FORTIFY_SOURCE caused some memcpy() and
memset() warnings when accessing multiple adjacent members
of a structure at once.

● The flexibility of the C language. ;)

FORTIFY_SOURCE

● Uses the compiler's __builtin_object_size().

● Determine the available size at a target address based on the
compile-time known structure layout details.

● Operates in two modes:

– Outer bounds: __builtin_object_size(object, 0)

– Inner bounds: __builtin_object_size(object, 1)

● More details: commit f68f2ff91512

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f68f2ff91512c199ec24883001245912afc17873

__builtin_object_size()

● memcpy() under CONFIG_FORTIFY_SOURCE uses
__builtin_object_size(object, 1)

__struct_group()

● Create a mirrored named and anonymous struct.

● Commit 50d7bd38c3aa

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d7bd38c3aafc4749e05e8d7fcb616979143602

struct_group()

● Group entries and mac into sectors and then do the memset().
(commit f069c7ab6cfb)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f069c7ab6cfb07edf9e3dc2071928225587794f1

Before struct_group()

● Addressing some -Warray-bounds warnings before
struct_group() (commit 606636dcbdbb)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=606636dcbdbb73b1a4ed61be77c76ea1087f042d

Before struct_group()

● Enclosing struct members into new structures upiu_req and
upiu_rsp (commit 1352eec8c0da)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1352eec8c0da71ee14b6b3bd46d49f8523f8e106

struct_group()

● struct_group()

● struct_group_attr()

● struct_group_tagged()

● More details in commit 50d7bd38c3aa

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=50d7bd38c3aafc4749e05e8d7fcb616979143602

Flexible array transformations

Flexible array transformations

● 0-element was a GNU extension. 1-element was a hack.

● Flexible array member was introduced in C99.

● One-element arrays are particularly confusing and prone to
error.

● zero-element and one-element arrays are deprecated.

https://www.kernel.org/doc/html/latest/process/deprecated.html
#zero-length-and-one-element-arrays

● These transformations are tricky and not that straightforward. I
have introduced bugs (all fixed already :p) while doing flexible
array transformations.

https://www.kernel.org/doc/html/latest/process/deprecated.html#zero-length-and-one-element-arrays
https://www.kernel.org/doc/html/latest/process/deprecated.html#zero-length-and-one-element-arrays

zero-length array

● sizeof(instance->items) == 0 (commits ab91c2a89f86,
f2cd32a443da)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ab91c2a89f86be2898cee208d492816ec238b2cf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f2cd32a443da694ac4e28fbf4ac6f9d5cc63a539

one-element array

● We have to remember to calculate n - 1 when using the
struct_size() helper.

flexible array member

● Now, with the hardened memcpy(), we can omit the use of
flex_array_size() in this case.

Flexible arrays and trailing arrays

● Compilers treat all trailing arrays as flexible arrays.

● It breaks FORTIFY_SOURCE in that any struct with a fixed
size trailing array will receive no sanity checking.

● It seems that there are a lot of legacy code “taking advantage”
of that.

● -fstrict-flex-array?

● GCC and Clang bugs:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101419
https://github.com/llvm/llvm-project/issues/55741

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101419
https://github.com/llvm/llvm-project/issues/55741

-Warray-bounds

● Enabled for GCC 11 and earlier. :)

● 153 more new warnings with GCC 12

● v5.18, GCC 11 to GCC 12:

$ grep warning: fedora36.log | grep 'Warray-bounds' | wc -l

153

● https://github.com/KSPP/linux/issues/190

https://github.com/KSPP/linux/issues/190

-Warray-bounds

● It is finding bugs. :)
● https://lore.kernel.org/lkml/202204201117.F44DCF9@keescook/

https://lore.kernel.org/lkml/202204201117.F44DCF9@keescook/

Other work

● -Wstringop-overflow making progress.

https://git.kernel.org/linus/a3a8b54b4f1a

● -Wimplicit-fallhrough for Clang is now enabled. We had almost
40,000 warnings.

https://github.com/KSPP/linux/issues/115

● -Wcast-function-type is now enabled.

https://git.kernel.org/linus/01367e86e90

https://git.kernel.org/linus/a3a8b54b4f1a
https://github.com/KSPP/linux/issues/115
https://git.kernel.org/linus/01367e86e90

memcpy() hardening and the compound
effect.

● https://outflux.net/slides/2022/lca/

1

https://outflux.net/slides/2022/lca/

How you can help. :)

How you can help. :)

● Doing flexible array transformations, of course. :)

https://github.com/KSPP/linux/issues/79

● Issue 79 contains a list with hundreds of patches that have
landed in mainline. They can be used as examples.

● Audit code and use the helpers available, when possible:
struct_size(), struct_group(), flex_array_size(), size_add(),
size_mul(), etc. See commit e1be43d9b5d0

● Take a look at the issue tracker. We have issues for everybody. :)

https://github.com/KSPP/linux/issues/

https://github.com/KSPP/linux/issues/79
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e1be43d9b5d0d1310dbd90185a8e5c7145dde40f
https://github.com/KSPP/linux/issues/

one-element arrays to flexible arrays

● Find uses of sizeof on the involved struct-with-one-element-
array or on the type of the one-element array itself.

● Find the n – 1 pattern and change it to just n. If you don’t find
this pattern then something else may be going on, and you
need to carefully verify that the size for the allocation and
the iteration over the array are correct. Otherwise, chances
are you just found a bug (usually an off-by-one error).

● Look for any iteration over the array and verify it is still within
the boundaries. Usually in the form of a for loop. Use
diffoscope before/after the changes to check the binary.

● CC-me: gustavoars@kernel.org

mailto:gustavoars@kernel.org

one-element arrays to flexible arrays

● The ideal scenario. (commit c72a826829cc)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c72a826829ccfb38019187a3a5ba6d3584b7b7dc

Conclusions

The best outcome

● In regards to the technical portion of this work, we want to
achieve having a robust and hardened kernel with secure
core infrastructure and safer APIs, that allow us to both
eliminate entire bug classes and methods of exploitation in
the upstream Linux kernel. That definitely would be the best
outcome.

Political work

● Hopefully the social and political work we've been doing all
this time will make it easier to introduce more changes that
improve the security of the kernel and, at the same time,
benefit new people that want to collaborate with us by helping
them navigate with ease the, sometimes, wild waters of the
Linux kernel community.

A commit at a time

● Change in the kernel, especially in terms of security, is an
evolutionary process. It is slow and demands a lot of
patience. There is still more work than we can get done. We
always welcome people who can help out. Companies
participating in any ecosystem that's based on Linux need to
really consider funding projects that improve the overall security
of the kernel. This is an effort that is driving change a commit
at a time and, that benefits billions of people around the
world, including of course, users and customers of tech
companies of all sizes.

https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

Thank you! :)

Gustavo A. R. Silva
gustavoars@kernel.org

@embeddedgus

mailto:gustavoars@kernel.org
https://twitter.com/embeddedgus

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

