

Hardware and its Concurrency
Habits

© 2023 Meta Platforms

Paul E. McKenney, Meta Platforms Kernel Team

Kernel Recipes, September 27, 2023

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 3

2

Recette Pour le Codage Simultané

● Une pincée de connaissance des lois de la
physique

● Compréhension modeste du matériel informatique
● Compréhension approfondie des exigences
● Conception soignée, y compris la synchronisation
● Validation brutale

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapitre 3

3

Recette Pour le Codage Simultané

● Une pincée de connaissance des lois de la
physique

● Compréhension modeste du matériel informatique
● Compréhension approfondie des exigences
● Conception soignée, y compris la synchronisation
● Validation brutale

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapitre 3

5

“Let Them Run Free!!!”

6

“Let Them Run Free!!!”

CPU Benchmark TrackmeetCPU Benchmark Trackmeet

7

“Let Them Run Free!!!”

CPU Benchmark TrackmeetCPU Benchmark Trackmeet

Sadly, it is now more of an obstacle course than a track...

8

Don’t Make ‘em Like They Used To!

9

Don’t Make ‘em Like They Used To

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

10

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Don’t Make ‘em Like They Used To!

● No cacheNo cache
● Shallow pipelineShallow pipeline
● In-order executionIn-order execution
● One instruction at a timeOne instruction at a time
● Predictable (slow) Predictable (slow)

executionexecution

● Large cacheLarge cache
● Deep pipelineDeep pipeline
● Out of orderOut of order
● Super scalarSuper scalar
● Unpredictable (fast) Unpredictable (fast)

executionexecution

11

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Don’t Make ‘em Like They Used To!

● No cacheNo cache
● Shallow pipelineShallow pipeline
● In-order executionIn-order execution
● One instruction at a timeOne instruction at a time
● Predictable (slow) Predictable (slow)

executionexecution

● Large cacheLarge cache
● Deep pipelineDeep pipeline
● Out of orderOut of order
● Super scalarSuper scalar
● Unpredictable (fast) Unpredictable (fast)

executionexecution

“Tiny Bulldozer” “Semi Tractor-Trailer”

12

4.0 GHz clock, 20 MB L3

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Don’t Make ‘em Like They Used To!

● No cacheNo cache
● Shallow pipelineShallow pipeline
● In-order executionIn-order execution
● One instruction at a timeOne instruction at a time
● Predictable (slow) Predictable (slow)

executionexecution

● Large cacheLarge cache
● Deep pipelineDeep pipeline
● Out of orderOut of order
● Super scalarSuper scalar
● Unpredictable (fast) Unpredictable (fast)

executionexecution

What would be the computing-systems equivalents of a freight train?

13

“Good Olde Days” CPU Architecture

80386 Architecture (Wikipedia user “Appaloosa” GDFL, simplified and reformatted)

32 bit

Protection
Test Unit

ALU
● Barrel Shifter
● Multiply/Divide
● Register File

Segmentation

Bus
Control

32 Bit

Paging

Prefetcher /
Limit Checker

Code Queue
(16 Bytes)

Instruction
Decoder

3-Decoded
Instruction

Queue

Decode and
Sequencing

Control
ROM

Dedicated ALU Bus

34 bit

32 bit Effective Address

S
ta

tu
s

Fl
ag

s

A
LU

 C
on

tro
l

14

The 80386 Taught Me Concurrency

That and a logic analyzer...

15

But Instructions Took Several Cycles!

16

Pipelined Execution For The Win!!!

(Wikipedia user “Amit6” CC BY-SA 3.0, reformatted)

17

Superscalar Execution For The Win!!!

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted)

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit

18

Why All This Hardware Complexity?

19

Laws of Physics: Atoms Are Too Big!!!

Each spot is an atom. Qingxiao Wang/UT Dallas ca. 2016.

20

Laws of Physics: Atoms Are Too Big!!!

Each spot is an atom. Qingxiao Wang/UT Dallas ca. 2016.

Speed controlled by base thickness:

At least one atom thick!!!

21

Laws of Physics: Light Is Too Slow!!!

“One nanosecond per foot” courtesy of Grace Hopper (https://www.youtube.com/watch?v=9eyFDBPk4Yw)
https://en.wikipedia.org/wiki/List_of_refractive_indices A 50% sugar solution is “light syrup”.

● Following the footsteps of Admiral Hopper:
– Light goes 11.803 inches/ns in a vacuum

● Or, if you prefer, 1.0097 lengths of A4 paper per nanosecond
● Light goes 1 width of A4 paper per nanosecond in 50% sugar solution

– But over and back: 5.9015 in/ns
– But not 1GHz! Instead, ~2GHz: ~3in/ns
– But Cu: ~1 in/ns, or Si transistors: ~0.1 in/ns
– Plus other slowdowns: prototols, electronics, ...

22

Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM

23

Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM

Light is way too slow in Cu and Si and atoms are way too big!!!

24

Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Light is way too slow in Cu and Si and atoms are way too big!!!

25

Laws of Physics: Summary

● The speed of light is finite (especially in Cu and
Si) and atoms are of non-zero size

● Mathematics, electronics, and chemistry also
take their toll

● Systems are fast, so this matters

26

Laws of Physics: Summary

● The speed of light is finite (especially in Cu and
Si) and atoms are of non-zero size

● Mathematics, electronics, and chemistry also
take their toll

● Systems are fast, so this matters

“Gentlemen, you have two fundamental problems:
(1) the finite speed of light and (2) the atomic nature of matter.” *

* Gordon Moore quoting Stephen Hawking

27

Why All This Hardware Complexity?

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Slow light and big atoms create modern computing obstacle course!!!

Light is way too slow in Cu and Si and atoms are way too big!!!

28

Account For All CPU Complexity???

● Sometimes, yes! (Assembly language!)
● But we also need portability: CPUs change

– From family to family
– With each revision of silicon
– To work around hardware bugs
– As a given physical CPU ages

29

One of the ALUs Might Be Disabled

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted)

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit

XX

30

Thus, Simple Portable CPU Model

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit

CPU
CPU

StoreStore
BufferBuffer C

ac
he

C
ac

he

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)

31

And Lots Of CPUs Per System!!!

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Interconnect

Interconnect

CPUs 0-27 &
CPUs 224-251

CPUs 28-55 &
CPUs 252-279

CPUs 56-83 &
CPUs 280-307

CPUs 84-111 &
CPUs 308-335

CPUs 112-139 &
CPUs 336-363

CPUs 140-167 &
CPUs 364-391

CPUs 168-195 &
CPUs 392-419

CPUs 196-223 &
CPUs 420-447

32

Obstacles for Modern Computers

33

Obstacle: Pipeline Flush

PIPELINE ERROR

PIPELINE ERROR

BR
AN
CH
 M
IS
PR
ED
IC
TI
ON

Running at full speed requires perfect branch prediction

34

Obstacle: Memory Reference

A single fetch all the way from memory can cost hundreds of clock cycles

35

Obstacle: Atomic Operation

Atomic operations require locking cachelines and/or busses, incurring significant delays

36

Obstacle: Memory Barrier

Memory barriers result in stalls and/or ordering constraints, again incurring delays

Memory

Barrier
Memory

Barrier

37

Obstacle: Thermal Throttling

Efficient use of CPU hardware generates heat, throttling the CPU clock frequency

38

Obstacle: Cache Miss

Cache misses result in waiting for data to arrive (from memory or other CPUs)

CACHE-

MISS

TOLL
BOOTH

CACHE-

MISS

TOLL
BOOTH

39

Obstacle: Input/Output Operation

And here you thought that cache misses were slow...

40

Which Obstables To Focus On?

1) I/O operations (but often higher-level issue)
2) Communications cache misses
3) Memory barriers and atomic operations
4) Capacity/geometry cache misses (memory)
5) Branch prediction

41

Which Obstables To Focus On?

1) I/O operations (but often higher-level issue)
2) Communications cache misses
3) Memory barriers and atomic operations
4) Capacity/geometry cache misses (memory)
5) Branch prediction

These obstacles can (usually) be overcome in a portable manner.

42

Xeon Platinum 8176 2.1GHz: CPU 0

43

Location Really Matters!!!

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Last-Level Cache

Interconnect

Interconnect

CPUs 0-27 &
CPUs 224-251

CPUs 28-55 &
CPUs 252-279

CPUs 56-83 &
CPUs 280-307

CPUs 84-111 &
CPUs 308-335

CPUs 112-139 &
CPUs 336-363

CPUs 140-167 &
CPUs 364-391

CPUs 168-195 &
CPUs 392-419

CPUs 196-223 &
CPUs 420-447

44

Latency Demonstration

49

Can Hardware Help???

50

Can Hardware Help???

So
ur

ce

D
ra

in

Sub-Atomic Base

Vacuum-gap transistor: At these scales, the atmosphere is a vacuum!!!

51

We Really Can Hand-Place Atoms...

Actually a carbon monoxide molecule that I moved across a few planes of copper

52

We Really Can Hand-Place Atoms...

But not trillions of them in a cost-effective manner!!!

Does Not Scale

53

Incremental Help From Hardware

54

Hardware 3D Integration

3 cm

1.5 cm

Half the distance,
twice the speed!!!

Both stacked chiplets and lithographically stacked transistors.

55

Stacked Chiplets/Dies

Diagram by Shmuel Csaba Otto Traian, CCSA4.0

56

Lithographically Stacked Transistors

https://ieeexplore.ieee.org/document/9976473
https://spectrum.ieee.org/intels-stacked-nanosheet-transistors-could-be-the-next-step-in-moores-law

57

Hardware 3D Integration

* Give or take issues with power, cooling, alignment, interconnect drivers, and so on.

3 cm

1.5 cm

Half the distance,
twice the speed *

58

Hardware Integration is Helping

Q3 2017: 56 CPUs with ~100ns latencies

59

Hardware Integration is Helping

November 2008: 16 CPUs with ~100ns latencies: More than 3x in nine years!!!

60

Hardware Accelerators

61

Hardware Accelerators, Theory

Data Accelerator

Unidirectional data flow, no out and back, twice the speed!!!

62

Hardware Accelerators, Practice

Data Accelerator

Sadly, back to request-response, but better latency with local memory?

Accelerator-local
memory

System main memory

63

So Why Hardware Accelerators???

● Optimized data transfers (e.g., larger blocks)
● Optimized hard-wired computation
● Better performance per watt
● Better performance per unit capital cost

64

Hardware Has Been Helping All Along

65

What Hardware Is Up Against

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Light is way too slow in Cu and Si and atoms are way too big!!!

66

Therefore, Memory Hierarchies!!!

67

Simple Portable CPU Model Redux

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit

CPU
CPU

StoreStore
BufferBuffer C

ac
he

C
ac

he

(N
ot

 y
et

)

68

Read-Side Hardware Help (1/7)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

Request cacheline x

69

Read-Side Hardware Help (2/8)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

Request cacheline x

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

70

Read-Side Hardware Help (3/8)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

Request cacheline x

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

71

Read-Side Hardware Help (4/8)

CPU 0

Cache

CPU 3

Cache

CPU 1 CPU 2

Cacheline x = 42, y = 63

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

72

Read-Side Hardware Help (5/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Cacheline x = 42, y = 63

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

73

Read-Side Hardware Help (6/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

74

Read-Side Hardware Help (7/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Caches help beat laws of physics given spatial locality!!!

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

75

Read-Side Hardware Help (8/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Caches help beat laws of physics given temporal locality!!!

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

76

Levels of Cache on My Laptop

Index Line Size Associativity Size
0 64 8 32K
1 64 8 32K
2 64 4 256K
3 64 16 16,384K

When taking on the laws of physics, don’t be afraid to use a few transistors

77

Levels of Cache on Large Old Server

Index Line Size Associativity Size
0 64 8 32K
1 64 6 32K
2 64 16 1,024K
3 64 11 39,424K

When taking on the laws of physics, don’t be afraid to use lots of transistors

79

But What About Writes?

80

Write-Side Hardware Help (Summary)
● Store buffers for the win!!! Sort of…

– Cache line for variable x is initially at CPU 3
– CPU 0 writes 1 to x, but doesn't have cacheline

● So holds the write in CPU 0's store buffer
● And requests exclusive access to the cacheline (which takes time)

– CPU 3 reads x, obtaining “0” immediately from cacheline
– CPU 0 receive's x's cacheline

● And CPU 0's write finally gets to the cacheline
● Overwriting the value that CPU 3 read, despite the write starting earlier

● Writes only appear to be instantaneous!!!

81

Simple Portable CPU Model Redux

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit

CPU
CPU

StoreStore
BufferBuffer C

ac
he

C
ac

he

N
ow

!!!

82

Write-Side Hardware Help (1/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

83

Write-Side Hardware Help (2/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)

The store buffer allows writes to completes quickly!!! Take that, laws of physics!!!

84

Write-Side Hardware Help (3/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)

Except that later read gets older value...

85

Write-Side Hardware Help (4/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)

86

Write-Side Hardware Help (5/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Respond with cacheline x = 0

87

Write-Side Hardware Help (6/7)

CPU 0

Store Buffer

x=1
Cache

x=0

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Respond with cacheline x = 0

88

Write-Side Hardware Help (7/7)

CPU 0

Store Buffer

Cache

x=1

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Quick write completion, sort of. Laws of physics: Slow or misordered!!!

89

Misordering? Or Propagation Delay?

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X ==

 0 X ==
 1

fr

Time

90

And Careful What You Wish For!!!

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X ==

 0 X ==
 1

fr

Time
Hardware tricks help reduce the red triangle. But too bad about Meltdown and Spectre...

91

Can Software Help?

92

Can Software Help?
● Increasingly, yes!!!
● Use concurrent libraries, applications,

subsystems, and so on
– Let a few do the careful coding and tuning
– Let a great many benefit from the work of a few

● Use proper APIs to deal with memory ordering
– Chapter 14: “Advanced Synchronization: Memory Ordering”

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

93

Summary

94

Summary
● Modern hardware is highly optimized

– Most of the time!
– Incremental improvements due to integration
– But the speed of light is too slow and atoms too big

● Use concurrent software where available
● Structure your code to avoid the big obstacles

– Micro-optimizations only sometimes needed

95

For More Information
● “Computer Architecture: A Quantitative Approach”, Hennessey & Patterson (Recent HW)

● “Parallel Computer Architecture: A Hardware/Software Approach”, Culler et al.
– Includes SGI Origin and Sequent NUMA-Q

● “Programing Massively Parallel Processors: A Hands-on Approach”, Kirk & Hwu
– Primarily NVIDIA GPGPUs

● https://developer.nvidia.com/educators/existing-courses
– List of NVIDIA university courseware

● https://gpuopen.com/professional-compute
– List of AMD GPGPU-related content

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

96

L'antidote de Codage Simultané de la Femme de Paul

● Cordial de mûres sauvages de l'Himalaya
– Mettre deux litres de mûres dans un pot de quatre litres
– Ajouter cinq huitièmes litres de sucre
– Remplissez le pot de vodka
– Secouez tous les jours pendant cinq jours
– Secouez chaque semaine pendant cinq semaines
– Passer au tamis: Ajoutez des baies à la glace, consommez le

liquide filtré comme vous voulez

97

Paul’s Wife’s Concurrency Antidote

● Wild Himalayan Blackberry Cordial
– Put 8 cups wild himalayan blackberries in 1 gallon jar
– Add 2½ cups sugar
– Fill jar with vodka
– Shake every day for five days
– Shake every week for five weeks
– Pour through sieve: Add berries to ice cream, consume filtered

liquid as you wish

98

Paul’s Wife’s Concurrency Antidote

● Wild Himalayan Blackberry Cordial
– 8 cups wild himalayan blackberries in 1 gallon jar
– Add 2½ cups sugar
– Fill jar with vodka
– Shake every day for five days
– Shake every week for five weeks
– Pour through sieve: Add berries to ice cream, consume filtered

liquid as you wish

If there is no right tool, invent it!!!

 Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98

