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Recette Pour le Codage Simultané

● Une pincée de connaissance des lois de la 
physique

● Compréhension modeste du matériel informatique
● Compréhension approfondie des exigences
● Conception soignée, y compris la synchronisation
● Validation brutale

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html  Chapitre 3
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“Let Them Run Free!!!”
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“Let Them Run Free!!!”

CPU Benchmark TrackmeetCPU Benchmark Trackmeet
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“Let Them Run Free!!!”

CPU Benchmark TrackmeetCPU Benchmark Trackmeet

Sadly, it is now more of an obstacle course than a track...
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Don’t Make ‘em Like They Used To!
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Don’t Make ‘em Like They Used To

4.0 GHz clock, 20 MB L3 

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.
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“Tiny Bulldozer” “Semi Tractor-Trailer”
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4.0 GHz clock, 20 MB L3 

cache, 20 stage pipeline...

The only pipeline I need

is to cool off that hot-

headed brat.

Don’t Make ‘em Like They Used To!

● No cacheNo cache
● Shallow pipelineShallow pipeline
● In-order executionIn-order execution
● One instruction at a timeOne instruction at a time
● Predictable (slow) Predictable (slow) 

executionexecution

● Large cacheLarge cache
● Deep pipelineDeep pipeline
● Out of orderOut of order
● Super scalarSuper scalar
● Unpredictable (fast)  Unpredictable (fast)  

executionexecution

What would be the computing-systems equivalents of a freight train?
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“Good Olde Days” CPU Architecture

80386 Architecture (Wikipedia user “Appaloosa” GDFL, simplified and reformatted)
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The 80386 Taught Me Concurrency

That and a logic analyzer...
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But Instructions Took Several Cycles!
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Pipelined Execution For The Win!!!

(Wikipedia user “Amit6” CC BY-SA 3.0, reformatted)
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Superscalar Execution For The Win!!!

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted)

128 entry
ITLB

32 KB Instruction Cache
(8 way)

32 Byte Pre-Decode,
Fetch Buffer

18 Entry
Instruction Queue

128 Bit

6 Instructions

In
st

ru
ct

io
n

Fe
tc

h 
U

ni
t

Micro-
code

Simple
Decoder

Simple
Decoder

Simple
Decoder

Complex
Decoder

1μop1μop1μop4μops

7 Entry μop Buffer
4μops

Register Alias Table
and Allocator

96 Entry Reorder Buffer (ROB) Retirement Register File

4μops

4μops

Store
Data

Store
Address

SSE
ALU

ALU
Branch

SSE
Shuffle
MUL

ALU
SSE

Shuffle
ALU

ALU Load
Address

4μops

32 Entry Reservation Station

128 Bit
FMUL
FDIV

128 Bit
FADD

Memory Ordering Buffer
(MOB)

128 Bit

32 KB Dual Ported Data Cache
(8 way)

16 entry
DTLB

Store
128 Bit Load

256 entry
L2 DTLB

Shared
L2 Cache
(16 way)

Shared
Bus

Interface
Unit

256 Bit



18

Why All This Hardware Complexity?
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Laws of Physics: Atoms Are Too Big!!!

Each spot is an atom. Qingxiao Wang/UT Dallas ca. 2016. 
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Laws of Physics: Atoms Are Too Big!!!

Each spot is an atom. Qingxiao Wang/UT Dallas ca. 2016. 

Speed controlled by base thickness:

At least one atom thick!!!
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Laws of Physics: Light Is Too Slow!!!

“One nanosecond per foot” courtesy of Grace Hopper (https://www.youtube.com/watch?v=9eyFDBPk4Yw) 
https://en.wikipedia.org/wiki/List_of_refractive_indices   A 50% sugar solution is “light syrup”.

● Following the footsteps of Admiral Hopper:
– Light goes 11.803 inches/ns in a vacuum

● Or, if you prefer, 1.0097 lengths of A4 paper per nanosecond
● Light goes 1 width of A4 paper per nanosecond in 50% sugar solution

– But over and back: 5.9015 in/ns
– But not 1GHz!  Instead, ~2GHz: ~3in/ns
– But Cu: ~1 in/ns, or Si transistors: ~0.1 in/ns
– Plus other slowdowns: prototols, electronics, ...
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Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM
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Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM

Light is way too slow in Cu and Si and atoms are way too big!!!
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Laws of Physics: Data Is Slower!!!

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Light is way too slow in Cu and Si and atoms are way too big!!!
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Laws of Physics: Summary

● The speed of light is finite (especially in Cu and 
Si) and atoms are of non-zero size

● Mathematics, electronics, and chemistry also 
take their toll

● Systems are fast, so this matters
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Laws of Physics: Summary

● The speed of light is finite (especially in Cu and 
Si) and atoms are of non-zero size

● Mathematics, electronics, and chemistry also 
take their toll

● Systems are fast, so this matters

“Gentlemen, you have two fundamental problems:
(1) the finite speed of light and (2) the atomic nature of matter.” *

* Gordon Moore quoting Stephen Hawking
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Why All This Hardware Complexity?

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Slow light and big atoms create modern computing obstacle course!!!

Light is way too slow in Cu and Si and atoms are way too big!!!
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Account For All CPU Complexity???

● Sometimes, yes!  (Assembly language!)
● But we also need portability: CPUs change

– From family to family
– With each revision of silicon
– To work around hardware bugs
– As a given physical CPU ages
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One of the ALUs Might Be Disabled

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted)
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Thus, Simple Portable CPU Model
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Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)
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And Lots Of CPUs Per System!!!
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Obstacles for Modern Computers
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Obstacle:  Pipeline Flush

PIPELINE ERROR

PIPELINE ERROR

BR
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ON

Running at full speed requires perfect branch prediction
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Obstacle:  Memory Reference

A single fetch all the way from memory can cost hundreds of clock cycles
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Obstacle:  Atomic Operation

Atomic operations require locking cachelines and/or busses, incurring significant delays
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Obstacle:  Memory Barrier

Memory barriers result in stalls and/or ordering constraints, again incurring delays

Memory

Barrier
Memory

Barrier
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Obstacle: Thermal Throttling

Efficient use of CPU hardware generates heat, throttling the CPU clock frequency



38

Obstacle:  Cache Miss

Cache misses result in waiting for data to arrive (from memory or other CPUs)

CACHE-

MISS

TOLL
BOOTH

CACHE-

MISS

TOLL
BOOTH
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Obstacle:  Input/Output Operation

And here you thought that cache misses were slow...
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Which Obstables To Focus On?

1) I/O operations (but often higher-level issue)
2) Communications cache misses
3) Memory barriers and atomic operations
4) Capacity/geometry cache misses (memory)
5) Branch prediction
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Which Obstables To Focus On?

1) I/O operations (but often higher-level issue)
2) Communications cache misses
3) Memory barriers and atomic operations
4) Capacity/geometry cache misses (memory)
5) Branch prediction

These obstacles can (usually) be overcome in a portable manner.
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Xeon Platinum 8176 2.1GHz: CPU 0
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Location Really Matters!!!
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Latency Demonstration
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Can Hardware Help???
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Can Hardware Help???

So
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Sub-Atomic Base

Vacuum-gap transistor: At these scales, the atmosphere is a vacuum!!!
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We Really Can Hand-Place Atoms...

Actually a carbon monoxide molecule that I moved across a few planes of copper
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We Really Can Hand-Place Atoms...

But not trillions of them in a cost-effective manner!!!

Does Not Scale
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Incremental Help From Hardware
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Hardware 3D Integration

3 cm

1.5 cm

Half the distance,
twice the speed!!!

Both stacked chiplets and lithographically stacked transistors.
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Stacked Chiplets/Dies

Diagram by Shmuel Csaba Otto Traian, CCSA4.0
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Lithographically Stacked Transistors

https://ieeexplore.ieee.org/document/9976473 
https://spectrum.ieee.org/intels-stacked-nanosheet-transistors-could-be-the-next-step-in-moores-law
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Hardware 3D Integration

* Give or take issues with power, cooling, alignment, interconnect drivers, and so on.

3 cm

1.5 cm

Half the distance,
twice the speed *
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Hardware Integration is Helping

Q3 2017: 56 CPUs with ~100ns latencies
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Hardware Integration is Helping

November 2008: 16 CPUs with ~100ns latencies: More than 3x in nine years!!!
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Hardware Accelerators
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Hardware Accelerators, Theory

Data Accelerator

Unidirectional data flow, no out and back, twice the speed!!!
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Hardware Accelerators, Practice

Data Accelerator

Sadly, back to request-response, but better latency with local memory?

Accelerator-local
memory

System main memory
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So Why Hardware Accelerators???

● Optimized data transfers (e.g., larger blocks)
● Optimized hard-wired computation
● Better performance per watt
● Better performance per unit capital cost
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Hardware Has Been Helping All Along
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What Hardware Is Up Against

CPUs Caches Interconnects Memories
DRAM & NVM

Protocol
overheads

(Mathematics!)

Multiplexing &
Demultiplexing
(Electronics)

Clock-domain
transitions

(Electronics)

Phase
changes

(Chemistry)

Light is way too slow in Cu and Si and atoms are way too big!!!
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Therefore, Memory Hierarchies!!!
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Simple Portable CPU Model Redux

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)
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Read-Side Hardware Help (1/7)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)

Request cacheline x
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Read-Side Hardware Help (2/8)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

Request cacheline x

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (3/8)

CPU 0

Cache

CPU 3

Cache

x=42,y=63

CPU 1 CPU 2

Request cacheline x

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (4/8)

CPU 0

Cache

CPU 3

Cache

CPU 1 CPU 2

Cacheline x = 42, y = 63

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (5/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Cacheline x = 42, y = 63

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (6/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (7/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Caches help beat laws of physics given spatial locality!!!

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Read-Side Hardware Help (8/8)

CPU 0

Cache

x=42,y=63

CPU 3

Cache

CPU 1 CPU 2

Caches help beat laws of physics given temporal locality!!!

r1 = READ_ONCE(x)
r2 = READ_ONCE(y)
r3 = READ_ONCE(x)
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Levels of Cache on My Laptop

Index Line Size Associativity Size
0 64 8 32K
1 64 8 32K
2 64 4 256K
3 64 16 16,384K

When taking on the laws of physics, don’t be afraid to use a few transistors
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Levels of Cache on Large Old Server

Index Line Size Associativity Size
0 64 8 32K
1 64 6 32K
2 64 16 1,024K
3 64 11 39,424K

When taking on the laws of physics, don’t be afraid to use lots of transistors
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But What About Writes?
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Write-Side Hardware Help (Summary)
● Store buffers for the win!!!  Sort of…

– Cache line for variable x is initially at CPU 3
– CPU 0 writes 1 to x, but doesn't have cacheline

● So holds the write in CPU 0's store buffer
● And requests exclusive access to the cacheline (which takes time)

– CPU 3 reads x, obtaining “0” immediately from cacheline
– CPU 0 receive's x's cacheline

● And CPU 0's write finally gets to the cacheline
● Overwriting the value that CPU 3 read, despite the write starting earlier

● Writes only appear to be instantaneous!!!
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Simple Portable CPU Model Redux

Intel Core 2 Architecture (Wikipedia user “I, Appaloosa” CC BY-SA 3.0, reformatted and remixed)
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Write-Side Hardware Help (1/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)
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Write-Side Hardware Help (2/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)

The store buffer allows writes to completes quickly!!!  Take that, laws of physics!!!
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Write-Side Hardware Help (3/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)

Except that later read gets older value...
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Write-Side Hardware Help (4/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

Request cacheline x

WRITE_ONCE(x, 1) READ_ONCE(x)



86

Write-Side Hardware Help (5/7)

CPU 0

Store Buffer

x=1
Cache

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Respond with cacheline x = 0
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Write-Side Hardware Help (6/7)

CPU 0

Store Buffer

x=1
Cache

x=0

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Respond with cacheline x = 0
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Write-Side Hardware Help (7/7)

CPU 0

Store Buffer

Cache

x=1

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

Quick write completion, sort of.  Laws of physics: Slow or misordered!!!
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Misordering? Or Propagation Delay?

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X ==

 0 X ==
 1

fr    

Time



90

And Careful What You Wish For!!!

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X ==

 0 X ==
 1

fr    

Time
Hardware tricks help reduce the red triangle.  But too bad about Meltdown and Spectre...
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Can Software Help?
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Can Software Help?
● Increasingly, yes!!!
● Use concurrent libraries, applications, 

subsystems, and so on
– Let a few do the careful coding and tuning
– Let a great many benefit from the work of a few

● Use proper APIs to deal with memory ordering
– Chapter 14: “Advanced Synchronization: Memory Ordering”

https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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Summary
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Summary
● Modern hardware is highly optimized

– Most of the time!
– Incremental improvements due to integration
– But the speed of light is too slow and atoms too big

● Use concurrent software where available
● Structure your code to avoid the big obstacles

– Micro-optimizations only sometimes needed
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For More Information
● “Computer Architecture: A Quantitative Approach”, Hennessey & Patterson (Recent HW)

● “Parallel Computer Architecture: A Hardware/Software Approach”, Culler et al.
– Includes SGI Origin and Sequent NUMA-Q

● “Programing Massively Parallel Processors: A Hands-on Approach”, Kirk & Hwu
– Primarily NVIDIA GPGPUs

● https://developer.nvidia.com/educators/existing-courses 
– List of NVIDIA university courseware

● https://gpuopen.com/professional-compute 
– List of AMD GPGPU-related content

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
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L'antidote de Codage Simultané de la Femme de Paul

● Cordial de mûres sauvages de l'Himalaya
– Mettre deux litres de mûres dans un pot de quatre litres
– Ajouter cinq huitièmes litres de sucre
– Remplissez le pot de vodka
– Secouez tous les jours pendant cinq jours
– Secouez chaque semaine pendant cinq semaines
– Passer au tamis: Ajoutez des baies à la glace, consommez le 

liquide filtré comme vous voulez
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Paul’s Wife’s Concurrency Antidote

● Wild Himalayan Blackberry Cordial
– Put 8 cups wild himalayan blackberries in 1 gallon jar
– Add 2½ cups sugar
– Fill jar with vodka
– Shake every day for five days
– Shake every week for five weeks
– Pour through sieve: Add berries to ice cream, consume filtered 

liquid as you wish
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Paul’s Wife’s Concurrency Antidote

● Wild Himalayan Blackberry Cordial
– 8 cups wild himalayan blackberries in 1 gallon jar
– Add 2½ cups sugar
– Fill jar with vodka
– Shake every day for five days
– Shake every week for five weeks
– Pour through sieve: Add berries to ice cream, consume filtered 

liquid as you wish

If there is no right tool, invent it!!!

  Questions?  
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