
Checking your work: Linux kernel testing
and CI

Scaling reliability across the global upstream community

David Vernet
void@manifault.com

Kernel Recipes 2022 – Paris, France

mailto:void@manifault.com

Agenda 01 Disclaimers

02 How kernel tests are written

03 How kernel tests are run

04 What can we improve?

05 Q & A

06 Bonus: how to write a kselftest

01 Disclaimers

1. I may be missing details of tools I’m not aware of

2. Presentation was crafted in the middle of the night over the Atlantic

01 Disclaimers

02 How kernel tests are written

Pick your poison, there are a number of options

● kselftests (https://docs.kernel.org/dev-tools/kselftest.html)
● KUnit (https://docs.kernel.org/dev-tools/kunit/index.html)
● xfstests (https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/)
● Benchmarks (LKP @ https://github.com/intel/lkp-tests, Phoronix @

https://openbenchmarking.org/tests/pts)
● Fuzzers (https://github.com/google/syzkaller)
● Sanitizers (KASAN, kmemleak, …)
● Linux Test Project (https://github.com/linux-test-project/ltp)
● …

02 How kernel tests are written

https://docs.kernel.org/dev-tools/kselftest.html
https://docs.kernel.org/dev-tools/kunit/index.html
https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/
https://github.com/intel/lkp-tests
https://openbenchmarking.org/tests/pts
https://github.com/google/syzkaller
https://github.com/linux-test-project/ltp

What are kselftests?

Testcases are instances of userspace programs

Commonly written in C, but need only be an executable file

Located in tree at tools/testing/selftests

02 How kernel tests are written

06 How to write a kselftest

What are KUnit tests?

Unit testing framework for testing individual Linux kernel functions

Compiled into the kernel by specifying kconfig options

Testcases link directly against kernel symbols and kunit APIs, which
are used to make assertions about expected return values of the kernel
symbols

02 How kernel tests are written

What are xfstests?

Filesystem regression test suite (https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/)

Tests are categorized according to whether they’re global, shared between a subset of FSs, or
specific to one FS

Tests use common logic for bootstrapping block devices, etc

Located in a separate repository

02 How kernel tests are written

https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git/

And more test repos housed in external
repositories

Linux Kernel Performance (https://github.com/intel/lkp-tests)

Phoronix (https://openbenchmarking.org/tests/pts)

Linux Test Project (https://github.com/linux-test-project/ltp)

02 How kernel tests are written

https://github.com/intel/lkp-tests
https://openbenchmarking.org/tests/pts
https://github.com/linux-test-project/ltp

03 How kernel tests are run

Pick your poison, there are a few options
● KernelCI (https://foundation.kernelci.org)
● LKP / kernel test robot

(https://01.org/lkp/documentation/0-day-brief-introduction)
● Patchwork + github + extra magic

(https://patchwork.kernel.org/project/netdevbpf/list/)
● syzbot (https://syzkaller.appspot.com/upstream)
● Maintainers’ private machines (e.g. Josef Bacik’s btrfs dashboards:

http://toxicpanda.com/)
● Thorsten Leemhuis’ regzbot

(https://linux-regtracking.leemhuis.info/regzbot/mainline/)

03 How kernel tests are run

https://foundation.kernelci.org
https://01.org/lkp/documentation/0-day-brief-introduction
https://patchwork.kernel.org/project/netdevbpf/list/
https://syzkaller.appspot.com/upstream
http://toxicpanda.com/
https://linux-regtracking.leemhuis.info/regzbot/mainline/

KernelCI – A Linux Foundation project

Open source test automation system

Builds and runs kernels across a variety of trees, branches, toolchains,
and configs

Also runs tests on different architectures and SoCs

03 How kernel tests are run

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/job/

https://linux.kernelci.org/build/

https://linux.kernelci.org/build/

https://linux.kernelci.org/build/id/6295acad348c04ad65a39bdd/

Kernel module build logs

https://linux.kernelci.org/tests/

https://linux.kernelci.org/soc/

Pros

- Builds for multiple architectures
- Tests on multiple architectures
- Builds with multiple toolchains
- Useful information provided with

failures and known regressions
- Open source and part of the Linux

Foundation
- Emails failures to upstream lists
- Bisects to find culprit patches

KernelCI – Pros and Cons

Cons

- Only runs on merged patches
- …but new APIs are coming to allow

developers to address this
- Web dashboard needs some

redesign, still has some bugs

LKP – Linux Kernel Performance / 0 day

Run by the 0-day team at Intel

Builds and runs kernels across a variety of trees, branches, toolchains, and configs, including unmerged patches

Runs build tests, benchmarks, and logical tests (defined out of tree in separate github repo)

Only builds and tests on and for x86 (though apparently they also build for other architectures on private jobs /
branches?)

03 How kernel tests are run

https://www.intel.com/content/www/us/en/developer/topic-tech
nology/open/linux-kernel-performance/overview.html

https://www.intel.com/content/www/us/en/developer/topic-tech
nology/open/linux-kernel-performance/overview.html

https://lists.01.org/hyperkitty/

https://lists.01.org/hyperkitty/list/kbuild-all@lists.01.org/

Pros

- Builds on patches that have not yet
been merged

- Provides strong signal by sending
messages to upstream lists

- Runs benchmarks
- Does bisection to find initial broken

commit

LKP / 0 Day – Pros and Cons

Cons
- Only runs builds and tests for x86

(or not?)
- Does not build with multiple

toolchains
- Error information helpful, but less

comprehensive than KernelCI
- Uses Intel / private infrastructure

(and source?)

https://patchwork.kernel.org

Patchwork + github – How BPF runs CI tests

Patchwork is a free, web-based patch tracking system

Architecture is a combination of patchwork, github, Meta infrastructure

Runs all BPF seltests (https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf) on
every patch sent to bpf and bpf-next lists

Only builds and tests for x86 and s390x architectures

03 How kernel tests are run

https://github.com/torvalds/linux/tree/master/tools/testing/selftests/bpf

https://patchwork.kernel.org/project/netdevbpf/list/

Components

Patchwork Kernel Patches Daemon kernel_patches/bpf
GitHub repo

GitHub action runners (x86, s390x)

kernel_patches/vm_test

Slide copied almost verbatim from BPF CI talk by Mykola Lysenko at LSFMM 2022
(https://docs.google.com/presentation/d/1RQZjLkbXmSFOr_4Sj5BdQsXbUh_vMshXi7w09pUpWsY/edit#slide=id.g127798017a6_0_194)

https://docs.google.com/presentation/d/1RQZjLkbXmSFOr_4Sj5BdQsXbUh_vMshXi7w09pUpWsY/edit#slide=id.g127798017a6_0_194

https://patchwork.kernel.org/project/netdevbpf/list/

https://patchwork.kernel.org/project/netdevbpf/list/

Pros

- Patchwork is used by maintainers
(one stop shops can be nice)

- Runs on every patch sent to BPF
lists

- Runs on at least 2 architectures,
could theoretically add more

- BPF tests in general are easy to run
locally – can use script to run in VM

- New BPF tests automatically run

Patchwork

Cons

- Other patchwork suites need their
own daemon, etc infra to run CI

- Doesn’t send messages to BPF lists
for job failures

- Uses Meta / private infrastructure
for Kernel Patches daemon

- Doesn’t run tests on SoCs or
directly on various non-x86
hardware (uses QEMU for s390x)

syzkaller + syzbot – Fuzzing the kernel

Continuously fuzzes main Linux kernel branches

Reports found bugs to upstream lists

Bisects to find bugs (and fixes) on specific patches

Runs on multiple architectures

03 How kernel tests are run

https://syzkaller.appspot.com/upstream

https://syzkaller.appspot.com/upstream

https://syzkaller.appspot.com/upstream

https://lore.kernel.org/lkml/000000000000f537cc05ddef88db@google.com/T/

Pros

- Great coverage thanks to the nature
of fuzzing + sanitizers

- Bisects to find culprit patch, and the
patch that fixes an issue

- Runs on multiple architectures (in
VMs)

- Sends messages to upstream on
failures

syzbot

Cons

- Doesn’t run on unmerged patches
- Doesn’t run selftests / kunit tests
- Runs on proprietary Google infra
- Configurations are hard-coded per

platform in the syzbot repo

Independently managed solutions (e.g. for btrfs)

http://toxicpanda.com

http://toxicpanda.com

http://toxicpanda.com/results/josefbacik/fedora-rawhide/btrfs_nor
mal_freespacetree/05-30-2022-21:06:02/index.html

http://toxicpanda.com/performance/

http://toxicpanda.com/performa
nce/smallfiles100k.html

Pros

- Tailored directly to the need of the
subsystem

- Inspires test and benchmark writing

Independent solutions

Cons

- No cross architecture, cross-config,
etc coverage provided by
framework.

- Maintainers need to spend a lot of
their time getting something like this
set up

04 What can be improved?

Note: Lots of discussion expected (and hoped for) during this section.
Please feel free to interject.

04 What can be improved?

Let’s start by talking about CI

All of the CI systems we’ve covered have roughly
the same, or at least similar, goals

Run tests on some matrix of configurations and architectures

When regressions are detected, provide signal:

Ideally before patches are merged

Otherwise, bisect and detect the bad patch automatically

04 What can be improved?

All of the CI systems do a subset of things well

KernelCI has a great UI, gets a lot of test coverage and provides detailed information

LKP / kernel test robot / 0-day detects regressions for all patches sent to the list, and pings vger when
a regression is detected. It also runs tests not included in the source tree, including benchmarks

Patchwork / BPF also has a great UI, makes it easy for developers to test locally, and provides signal
for all patches sent to the BPF lists. The signal is also highly reliable, due to BPF selftests being
deterministic and fast.

04 What can be improved?

Can we combine forces?

As maintainers / kernel developers, for the purposes of testing the
kernel, can we break anything out into shared code?

- Patch bisection
- Invoking kselftests, kunit, interpreting TAP output

04 What can be improved?

04 What can be improved?

What about our approach to writing tests?

kselftests is great, but has room for improvement

Was originally intended as a dumping ground for tests that would often
bit rot on individual developers’ servers

04 What can be improved?

04 What can be improved?

Allow for more comprehensive kselftest
configurations

The maintainers of each test suite know best how it should be
configured

Allow selftest suites to be configured to advertise:

- State: Stable, flaky, unstable
- Support: Supported architectures, unsupported config options (not

just what’s necessary to run which is what exists today)
- Trees and branches to run on
- Frequency of runs + how to invoke test for each frequency

04 What can be improved?

Add more tests!

Great way to test your newly added APIs (both design and
correctness)

Leverage the excellent infrastructure being developed in tools like
KernelCI

Add your tests to the tree

04 What can be improved?

Out-of-tree tests

Nothing at all wrong with having them (in fact they provide a ton of
value today), but…

Having tests which inform the "official" stability, performance, etc for
the kernel, should probably reside in the kernel tree as a general rule

Allows tests to be controlled and configured by maintainers

CI systems can always pull tests from multiple sources

04 What can be improved?

04 What can be improved?

…and what do we need to avoid?

Annoying maintainers

Having a CI system should alleviate pressure on maintainers

Things can get tricky though

- Flaky tests
- Tests failing after merge

If tests waste people’s time, they are providing negative value

If CI systems spam upstream lists, they are providing negative value

04 What can be improved?

Not all tests created equal

Need a high threshold (which we currently have) for when failing CI
runs should email upstream lists

- Build regressions are a very stable and reliable signal
- If a testrun fails, it’s less clear. Could be flaky, broken test, failing

hardware on the host, etc.

04 What can be improved?

How failing tests are interpreted should be up to
the maintainers of a subsystem

For subsystems like RCU and BPF, test failures are a strong signal, as
tests are actively fixed if flakiness is observed

For subsystems like cgroup, it’s less clear. Some testcases (such as
test_cpu.c and test_memcontrol.c) are validating heuristic behavior

04 What can be improved?

05 Q & A

06 Bonus: How to write a kselftest

Anatomy of a kselftest suite – livepatch

06 How to write a kselftest

config file contains kconfig options required to build and run the suite

Makefile contains recipes for compiling testcases, and variables that are
consumed by the kselftest build system

kselftests example – livepatch config file and Makefiles

06 How to write a kselftest

06 How to write a kselftest

06 How to write a kselftest

