arm

© 2019 Arm Limited

ex-Arm Ltd., Kernel Team

No NMI? No Problem! -
Implementing Arm64

Pseudo-NMI

Julien Thierry <jthierry@redhat.com>
September 24, 2019

About Myself & the talk

e Joined Arm in June 2017

o Linux Kernel team
o Cambridge, UK

e First kernel related job
e Leftin August 2019

e Work presented here done while employed by Arm

© 2019 Arm Limited q rm

What are IRQs?

e Manifestation of event in the system: device or program triggered

e Interrupts active flow of execution
e Managed with some primitives:

o local_irq_disable/enable()
o local_irq_save/restore()

3 © 2019 Arm Limited q rm

What are NMIs?

e Non-Maskable Interrupt

e Interrupts that can happen while interrupts are disabled

e Generally cannot be disabled locally

e Used for reporting hardware status, timer expiration, profiling, ...
e x86: Dedicated exception entry for NMls

e SPARC: Interrupts with highest possible priority

4+ ©2019AmmLimited arm

NMI Handlers

e Dedicated context:

« nmi_enter()
o nmi_ exit()

e Inform system wide features (e.g. printk, ftrace, rcu, ...)
e Restrictions:

o No NMI nesting
o No preemption
o Keeps NMI handlers simpler

© 2019 Arm Limited q rm

NMI Handlers and Locks

void inc_counter(void)

{

unsigned long flags;

flags = raw_spin_lock_irgsave(&count_lock);
global _counter += 1;

raw_spin_unlock_irgqrestore(&count_lock, flags);

© 2019 Arm Limited

arm

NMI Handlers and Locks

void inc_counter(void)

{

unsigned long flags;
flags = raw_spin_lock_irgsave(&count_lock);

global _counter += 1;
raw_spin_unlock_irgqrestore(&count_lock, flags);

e Lock cannot protect against NMI

e Can protect from concurrency (SMP) — mutex

© 2019 Arm Limied arm

The Perf Case

Demo

7 © 2019 Arm Limited q rm

The Perf Case

irq__disable()

8 © 2019 Arm Limited

perf event
(in random
location)

Perf event handler

IRQ

irq__enable()

arm

Pseudo-NMI for Arm64

e No architected NMI

9 © 2019 Arm Limited q rm

Pseudo-NMI for Arm64

e No architected NMI

e But has IRQ priorities and priority masking
e Emulate NMI’s behaviour using an IRQ

o Distinguish NMI from normal IRQ: two distinct priorities
o Block IRQs while allowing NMls: mask priority of normal IRQs

9 © 2019 Arm Limited q rm

Arm64 CPU Interrupt Control

o +|
|
cPU
fomooees +
| PSTATE |
RQ | \
--------------- >| 1 |
| \
| \
| \
e +
Fommmneas +

arm

10 © 2019 Arm Limited

Arm64 CPU Interrupt Control

PSTATE.I bit
e Toggled by local_irq_enable/disable()
e Prevents CPU to jump to interrupt vector

e Single bit — only binary state

11 © 2019 Arm Limited

arm

Arm64 CPU Interrupt Control

ommmmmn e +
| |
| CPU

Hommmns +
| PSTATE |

RQ | \

--------------- >| 1 |
|1 \
|1 \

--------------- >| F |

FIQ tomneeee- +
T TCTRE +

12 © 2019 Arm Limited q rm

More control with the GIC

13

Generic
Interrupt

Controller

Fommmmm e +

GIC CPU

Interface

Fo-mee- +

| \ RQ

------------------- — e

| PMR |

| \

| \

| \

F--meee- +
Fommmm +

© 2019 Arm Limited

arm

More control with the GIC

Fommemmm e + R e LR +
|
Fommm e + JUREEEEEEEEEE L + |
| |
GIC CPU | CPU |
Interface | |
R — |
Generic Fommmmee- + | | PSTATE | |
| \ RQ [\ |
Interrupt |--------mmmmeaoo- --->| == mmm e > I | |
| PMR | [\ |
Controller | | | | |
| \ [\ |
| | R — + |
R + | |
| \ \ | | |
| Fommm e + Fommmmmme e + |
I |
B e e e e e e +
Per CPU
Fommemmm e +

14 © 2019 Arm Limited q rm

Fitting priorities in linux

e Stop touching PSTATE.I bit
e Mask IRQs using PMR in local_irq_*()
e Configure NMls with high enough priority in GIC

15 © 2019 Arm Limited q rm

Fitting priorities in linux

Stop touching PSTATE.I bit
Mask IRQs using PMR in local_irq_*()
Configure NMls with high enough priority in GIC

Upon IRQ, interrupts are automatically disabled (PSTATE.I)
Some contexts (idle, KVM guests, ...) cannot use PMR for IRQ disabling

Need to take care to have consistent state when reaching generic code

© 2019 Arm Limited

arm

Using the NMI

e Requester needs to set up target IRQ priority through irqchip

e Initial proposal: introduce new NMl state in enum irqchip irq state

16 © 2019 Arm Limited q rm

https://lore.kernel.org/patchwork/patch/948633/

Using the NMI

e Requester needs to set up target IRQ priority through irqchip
e Initial proposal: introduce new NMl state in enum irqchip irq state
e Not so popular:

Adding NMI delivery support at low level architecture irqg chip level
is perfectly fine, but the exposure of that needs to be restricted
very much. Adding it to the generic interrupt control interfaces is
not going to happen. That’s doomed to begin with and a complete abuse
of the interface as the handler can not ever be used for that.

Thanks ,

tglx

arm

16 © 2019 Arm Limited

https://lore.kernel.org/patchwork/patch/948633/

NMI API

o include/linux/interrupt.h
e Provide NMI API similar to the IRQ one:

o request nmi()/free_ nmi()
« enable_nmi() / disable_nmi()

e irq_chip changes
o Flag to advertise NMI support
o chip->irq nmi_ setup() / chip->irq nmi_ teardown()

e Not exported to modules

e (Per-cpu NMI variants available)

17 © 2019 Arm Limited

arm

Results on Perf

Demo

18 © 2019 Arm Limited q rm

Timeline

e Work initiated as by Daniel Thompson from Linaro:

19 © 2019 Arm Limited q rm

https://lkml.org/lkml/2015/3/18/423
https://lkml.org/lkml/2016/8/19/583
https://www.spinics.net/lists/arm-kernel/msg610736.html

Timeline

e Work initiated as by Daniel Thompson from Linaro:

e 2015-03-18: RFC: Pseudo-NMI for arm64 using ICC_PMR_EL1 (GICv3)
e 2016-08-19: RFCv3, v4.8-rc2
o 7 patches

o Uses PMR for IRQ enabling/disabling
o Hardcoded NMI priority for backtrace IPI

o ”"The code works-for-me (tm) and is more “real” than the last time | shared these patches.”

© 2019 Arm Limitec

arm

https://lkml.org/lkml/2015/3/18/423
https://lkml.org/lkml/2016/8/19/583
https://www.spinics.net/lists/arm-kernel/msg610736.html

Timeline

e Work initiated as by Daniel Thompson from Linaro:

e 2015-03-18: RFC: Pseudo-NMI for arm64 using ICC_PMR_EL1 (GICv3)
e 2016-08-19: RFCv3, v4.8-rc2

o 7 patches

o Uses PMR for IRQ enabling/disabling

o Hardcoded NMI priority for backtrace IPI

o ”"The code works-for-me (tm) and is more “real” than the last time | shared these patches.”

e 2017-07 or 2017-08: | start working on it

© 2019 Arm Limited

arm

https://lkml.org/lkml/2015/3/18/423
https://lkml.org/lkml/2016/8/19/583
https://www.spinics.net/lists/arm-kernel/msg610736.html

Timeline

e Work initiated as by Daniel Thompson from Linaro:

e 2015-03-18: RFC: Pseudo-NMI for arm64 using ICC_PMR_EL1 (GICv3)
e 2016-08-19: RFCv3, v4.8-rc2
o 7 patches
o Uses PMR for IRQ enabling/disabling
o Hardcoded NMI priority for backtrace IPI
o ”"The code works-for-me (tm) and is more “real” than the last time | shared these patches.”

e 2017-07 or 2017-08: | start working on it

e 2017-10-11: RFC: arm64: provide pseudo NMI with GICv3, v4.15-rc2
e 7 patches
o Testing with perf interrupt
o dropped backtrace IPI

arm

https://lkml.org/lkml/2015/3/18/423
https://lkml.org/lkml/2016/8/19/583
https://www.spinics.net/lists/arm-kernel/msg610736.html

Timeline

e 2018-05-21: V3, v4.17-rc6
e 6 patches

20 © 2019 Arm Limited q rm

https://lkml.org/lkml/2018/5/21/276
https://lkml.org/lkml/2018/5/24/1124

Timeline

e 2018-05-21: V3, v4.17-rc6

e 6 patches
e Review

As it is, this patch is almost impossible to review. It turns the
interrupt masking upside down, messes with the GIC, hacks KVM... Too
many things change at once, and | find it very hard to build a mental
picture of the changes just by staring at it.

Thanks ,

M.

2 ©2019 AvmLimited arm

https://lkml.org/lkml/2018/5/21/276
https://lkml.org/lkml/2018/5/24/1124

Timeline

e 2018-05-25:Vv4
e 26 patches

21 © 2019 Arm Limited q rm

https://lkml.org/lkml/2018/5/25/203
https://lkml.org/lkml/2018/8/28/693
https://lkml.org/lkml/2018/8/28/661
https://lkml.org/lkml/2019/1/31/535

Timeline

e 2018-05-25: V4
e 26 patches

e 2018-08-28: V5, v4.19-rcl

o Depends on separate API for NMls series (4 patches)

21 © 2019 Arm Limited q rm

https://lkml.org/lkml/2018/5/25/203
https://lkml.org/lkml/2018/8/28/693
https://lkml.org/lkml/2018/8/28/661
https://lkml.org/lkml/2019/1/31/535

Timeline

e 2018-05-25:Vv4
e 26 patches
e 2018-08-28: V5, v4.19-rcl
o Depends on separate API for NMls series (4 patches)

e 2019-01-31: V10
e 25 patches

21 © 2019 Arm Limited

arm

https://lkml.org/lkml/2018/5/25/203
https://lkml.org/lkml/2018/8/28/693
https://lkml.org/lkml/2018/8/28/661
https://lkml.org/lkml/2019/1/31/535

Timeline

2018-05-25: v4
e 26 patches

2018-08-28: V5, v4.19-rcl

o Depends on separate API for NMls series (4 patches)
2019-01-31: V10
e 25 patches

2019-02-06: Merge of v10 + v6 of NMI APl in 5.1

© 2019 Arm Limited

arm

https://lkml.org/lkml/2018/5/25/203
https://lkml.org/lkml/2018/8/28/693
https://lkml.org/lkml/2018/8/28/661
https://lkml.org/lkml/2019/1/31/535

Timeline

22 © 2019 Arm Limited q rm

https://www.spinics.net/lists/arm-kernel/msg716956.html
https://lkml.org/lkml/2019/6/11/256

Timeline

e 2019-03-29: Bug: System hangs when using Ftrace graph tracer

22 © 2019 Arm Limited q rm

https://www.spinics.net/lists/arm-kernel/msg716956.html
https://lkml.org/lkml/2019/6/11/256

Timeline

e 2019-03-29: Bug: System hangs when using Ftrace graph tracer
e 2019-06-21: Fixed in 5.3 (V4 of 8 patches series)

22 © 2019 Arm Limited q rm

https://www.spinics.net/lists/arm-kernel/msg716956.html
https://lkml.org/lkml/2019/6/11/256

Try it, buy it

e Get Aarch64 capable platform with GICv3
e Get Linux v5.3+ sources

e Kernel Features — Support for NMlI-like interrupts
(CONFIG_ARM64_PSEUDO_NMI)

e Boot option irqchip.gicv3_ pseudo_nmi=1

e arm_pmu patches using NMI (V4)

o Still needs an update

2 ©2019 AvmLimited arm

https://www.spinics.net/lists/arm-kernel/msg741486.html

Next steps

e Use NMI for more features on Arm64

o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework
o Hard lockup detector: need some rework of arm__pmu driver

24 © 2019 Arm Limited q rm

Next steps

e Use NMI for more features on Arm64

o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework
o Hard lockup detector: need some rework of arm__pmu driver

e Look into using NMI API for SPARC NMls

24 © 2019 Arm Limited

arm

Next steps

24

Use NMI for more features on Arm64

o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework
o Hard lockup detector: need some rework of arm__pmu driver

Look into using NMI API for SPARC NMls

No plan for GICv2 support
Prior to GICv3, CPU interface is memory mapped

© 2019 Arm Limited

arm

Next steps

24

Use NMI for more features on Arm64
o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework

o Hard lockup detector: need some rework of arm__pmu driver

Look into using NMI API for SPARC NMls

No plan for GICv2 support
Prior to GICv3, CPU interface is memory mapped

o Slower accesses than for system register

© 2019 Arm Limited

arm

Next steps

24

Use NMI for more features on Arm64
o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework

o Hard lockup detector: need some rework of arm__pmu driver

Look into using NMI API for SPARC NMls

No plan for GICv2 support
Prior to GICv3, CPU interface is memory mapped

o Slower accesses than for system register
o Need access to per-cpu base address from local_irq_*()

© 2019 Arm Limited

arm

Next steps

24

© 2019 Arm Limitec

Use NMI for more features on Arm64

o Backtrace, CPU stop IPI: requires moving IPIs to use IRQ framework
o Hard lockup detector: need some rework of arm__pmu driver

Look into using NMI API for SPARC NMls

No plan for GICv2 support
Prior to GICv3, CPU interface is memory mapped

o Slower accesses than for system register
o Need access to per-cpu base address from local_irq_*()
o Technically do-able, but not necessarily clean nor interesting/usable

arm

Thanks!

The Arm trademarks featured in this presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2019 Arm Limited

Questions

arm

	
	About Myself & the talk
	What are IRQs?
	What are NMIs?
	NMI Handlers
	NMI Handlers and Locks
	The Perf Case
	The Perf Case
	Pseudo-NMI for Arm64
	Arm64 CPU Interrupt Control
	Arm64 CPU Interrupt Control
	Arm64 CPU Interrupt Control
	More control with the GIC
	More control with the GIC
	Fitting priorities in linux
	Using the NMI
	NMI API
	Results on Perf
	Timeline
	Timeline
	Timeline
	Timeline
	Try it, buy it
	Next steps
	
	

