
Idmapped Mounts

per vfsmount ownership changes
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VFS Ownership

· uids and gids express ownership

· VFS uses them for permission checking (DAC, POSIX ACLs, fscaps)

· persisted to disk for FS_REQUIRES_DEV filesystems
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Ownership & struct inode

· i_uid_read()
· read ownership information from struct inode

· calls from_kuid() to translate kuids to raw uids

· i_uid_write()
· write ownership information to struct inode

· calls make_kuid() to translate raw uids into kuids
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Idmappings

· translation of range of ids into another or same range of ids

· notational convention in this talk ==> u:k:r
u := userspace-id / userspace-idmapset
k := kernel-id / kernel-idmapset
r := range

· associated with struct user_namespace

· init_user_ns has identity idmapping: u0:k0:r4294967295
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Idmappings

· make_kuid(u0:k10000:r10000, u1000)
What does u1000 map down to?
id    - u  + k      = n
u1000 - u0 + k10000 = k11000

· from_kuid(u0:k10000:r10000, k11000)
What does k11000 map up to?
id     - k      + u     = n
k11000 - k10000 + u0    = u1000
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Ownership: Disk to VFS

· file owned on disk by raw uid 1000
· fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000

· fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k11000

// Examples
xfs_inode_to_disk(), ext4_do_update_inode(), fill_inode_item() // btrfs
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Ownership: VFS to Disk

· file owned on disk by raw uid 1000
· fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000
i_uid_read(u0:k0:r4294967295,  k1000) = u1000

· fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k1100
i_uid_read(u0:k10000:r10000, k11000) = u1000

// Examples
xfs_inode_from_disk(), __ext4_iget(), btrfs_read_locked_inode()
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Creating New Files (Userspace to/from VFS)

Translate between two ID-mappings via the kernel idmapset:

1. Map caller's userspace ids down into kernel ids in the caller's idmapping.
/* current_fsuid() */

2. Verify caller's kernel ids can be mapped up to userspace ids in filesystem's 
idmapping.
/* fsuidgid_has_mapping() */
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Crossmapping

vfs_mkdir()

· caller id:        u1000
caller idmapping: u0:k10000:r10000
fs idmapping:     u20000:k10000:r10000

/* fsuidgid_has_mapping() */
make_kuid(u0:k10000:r10000,     u1000)  = k11000 /* current_fsuid() */
from_kuid(u20000:k10000:r10000, k11000) = u21000
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Filesystem-wide Idmappings

· alter ownership filesystem-wide

· relevant idmapping is represented in the filesystem's superblock

· determined at mount time



Filesystem Use-Cases

home directories, containers, and service isolation
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Portable Home Directories

· aims to make it trivial to transport home directories between different machines

· all files are owned by uid and gid nobody/65534 on-disk 

· assign first free uid and gid in the range 60001...60513 at login

· recursively chown() to login uid and gid in case login uid and gid has changed :/
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Containers

· using unprivileged containers makes filesystem interactions difficult

· on-disk ownership of the container's rootfs needs to correspond to container's 
idmapping

· cannot share layers between unprivileged containers with different idmappings or 
between privileged and unprivileged containers

· recursive ownership changes waste space and make starting containers 
expensive



Idmapped Mounts

temporary and localized ownership changes
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Idmapped Mounts

File ownership should be changeable on a per-mount basis instead of a filesystem 
wide basis.

Idmapped mounts make it possible to change ownership in a temporary and 
localized way:

· ownership changes are restricted to a specific mount

· ownership changes are tied to the lifetime of a mount
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Remapping Helpers

· i_uid_into_mnt()

· Remap inode kernel ids from the filesystem into the mount idmapping
 /* Map filesystem's kernel id up into a userspace id in the filesystem's idmapping. */
from_kuid(filesystem-idmapping, kid) = uid

/* Map filesystem's userspace id down into a kernel id in the mount's idmapping. */
make_kuid(mount, uid) = kuid

· mapped_fsuid()

· Remap caller kernel fsids according to the mount idmapping
/* Map the caller's kernel id up into a userspace id in the mount's idmapping. */
from_kuid(mount-idmapping, kid) = uid

/* Map the mount's userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(filesystem-idmapping, uid) = kuid



Filesystem Use-Cases revisited

home directories, containers, and service isolation with idmapped mounts



ELT layout

Portable Home Directories

vfs_mkdir()

· caller id:            u60001
caller idmapping:     u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping:      u65534:k60001:r1 /* Of course, systemd will map way more IDs than that */

· Map the caller's userspace ids into kernel ids in the caller's idmapping
make_kuid(u0:k0:r4294967295, u60001) = k60001 /* current_fsuid() */

· Translate caller's kernel id into a kernel id in the filesystem's idmapping
mapped_fsuid(k60001)
        /* Map the kernel id up into a userspace id in the mount's idmapping. */
        from_kuid(u65534:k60001:r1, k60001) = u65534

        /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
        make_kuid(u0:k0:r4294967295, u65534) = k65534

· Verify that the caller's kernel ids can be mapped to userspace ids in the filesystem's idmapping
from_kuid(u0:k0:r4294967295, k65534) = u65534 /* VFS to Disk */

· So ultimately the file will be created with raw uid 65534 on disk.



ELT layout

Portable Home Directories

vfs_getattr() + cp_statx()

· caller id:            u60001
caller idmapping:     u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping:      u65534:k60001:r1 /* Of course, systemd will map way more IDs than that */

· Map the userspace id on disk down into a kernel id in the filesystem's idmapping
make_kuid(u0:k0:r4294967295, u65534) = k65534 /* i_uid_write() */

· Translate the kernel id into a kernel id in the mount's idmapping
i_uid_into_mnt(k65534)
        /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
        from_kuid(u0:k0:r4294967295, k65534) = u65534

        /* Map the userspace id down into a kernel id in the mounts's idmapping. */
        make_kuid(u65534:k60001:r1, u65534) = k60001

· Map the kernel id up into a userspace id in the caller's idmapping
from_kuid(u0:k0:r4294967295, k60001) = u60001 /* VFS to Userspace */

· So ultimately the caller will be reported that the file belongs to raw uid 60001 which is the caller's userspace id in our example.



UAPI

How to create idmapped mounts
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mount_setattr()

struct mount_attr *attr = &(struct mount_attr){};

/* create private, detached (not reachable anywhere in the filesystem) mount */

int fd_tree = open_tree(-EBADF, source,

                        OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC |

                        AT_EMPTY_PATH | AT_RECURSIVE);

attr->attr_set  |= MOUNT_ATTR_IDMAP;

attr->userns_fd  = fd_userns;

mount_setattr(fd_tree, "", AT_EMPTY_PATH | AT_RECURSIVE,

              attr, sizeof(struct mount_attr));



Demo
A few simple examples



Support & adoption

Filesystem support and userspace adoption
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Filesystem support

v5.12

· ext4

· fat (msdos, vfat)

· xfs

v5.15

· btrfs

· ntfs3

v5.18

· f2fs

v5.19

· erofs

· overlayfs (mounted on top of idmapped lower- and upper layers)
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Userspace support

· systemd

· containerd

· crun

· runC

· LXC

· LXD

· Podman

· Open Container Initiative (OCI) runtime spec

· mount(2) in util-linux



Thank you


