
Idmapped Mounts

per vfsmount ownership changes

ELT layout

VFS Ownership

· uids and gids express ownership

· VFS uses them for permission checking (DAC, POSIX ACLs, fscaps)

· persisted to disk for FS_REQUIRES_DEV filesystems

ELT layout

Ownership & struct inode

· i_uid_read()
· read ownership information from struct inode

· calls from_kuid() to translate kuids to raw uids

· i_uid_write()
· write ownership information to struct inode

· calls make_kuid() to translate raw uids into kuids

ELT layout

Idmappings

· translation of range of ids into another or same range of ids

· notational convention in this talk ==> u:k:r
u := userspace-id / userspace-idmapset
k := kernel-id / kernel-idmapset
r := range

· associated with struct user_namespace

· init_user_ns has identity idmapping: u0:k0:r4294967295

ELT layout

Idmappings

· make_kuid(u0:k10000:r10000, u1000)
What does u1000 map down to?
id - u + k = n
u1000 - u0 + k10000 = k11000

· from_kuid(u0:k10000:r10000, k11000)
What does k11000 map up to?
id - k + u = n
k11000 - k10000 + u0 = u1000

ELT layout

Ownership: Disk to VFS

· file owned on disk by raw uid 1000
· fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000

· fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k11000

// Examples
xfs_inode_to_disk(), ext4_do_update_inode(), fill_inode_item() // btrfs

ELT layout

Ownership: VFS to Disk

· file owned on disk by raw uid 1000
· fs mounted in init_user_ns
i_uid_write(u0:k0:r4294967295, u1000) = k1000
i_uid_read(u0:k0:r4294967295, k1000) = u1000

· fs mounted with idmapping
i_uid_write(u0:k10000:r10000, u1000) = k1100
i_uid_read(u0:k10000:r10000, k11000) = u1000

// Examples
xfs_inode_from_disk(), __ext4_iget(), btrfs_read_locked_inode()

ELT layout

Creating New Files (Userspace to/from VFS)

Translate between two ID-mappings via the kernel idmapset:

1. Map caller's userspace ids down into kernel ids in the caller's idmapping.
/* current_fsuid() */

2. Verify caller's kernel ids can be mapped up to userspace ids in filesystem's
idmapping.
/* fsuidgid_has_mapping() */

ELT layout

Crossmapping

vfs_mkdir()

· caller id: u1000
caller idmapping: u0:k10000:r10000
fs idmapping: u20000:k10000:r10000

/* fsuidgid_has_mapping() */
make_kuid(u0:k10000:r10000, u1000) = k11000 /* current_fsuid() */
from_kuid(u20000:k10000:r10000, k11000) = u21000

ELT layout

Filesystem-wide Idmappings

· alter ownership filesystem-wide

· relevant idmapping is represented in the filesystem's superblock

· determined at mount time

Filesystem Use-Cases

home directories, containers, and service isolation

ELT layout

Portable Home Directories

· aims to make it trivial to transport home directories between different machines

· all files are owned by uid and gid nobody/65534 on-disk

· assign first free uid and gid in the range 60001...60513 at login

· recursively chown() to login uid and gid in case login uid and gid has changed :/

ELT layout

Containers

· using unprivileged containers makes filesystem interactions difficult

· on-disk ownership of the container's rootfs needs to correspond to container's
idmapping

· cannot share layers between unprivileged containers with different idmappings or
between privileged and unprivileged containers

· recursive ownership changes waste space and make starting containers
expensive

Idmapped Mounts

temporary and localized ownership changes

ELT layout

Idmapped Mounts

File ownership should be changeable on a per-mount basis instead of a filesystem
wide basis.

Idmapped mounts make it possible to change ownership in a temporary and
localized way:

· ownership changes are restricted to a specific mount

· ownership changes are tied to the lifetime of a mount

ELT layout

Remapping Helpers

· i_uid_into_mnt()

· Remap inode kernel ids from the filesystem into the mount idmapping
 /* Map filesystem's kernel id up into a userspace id in the filesystem's idmapping. */
from_kuid(filesystem-idmapping, kid) = uid

/* Map filesystem's userspace id down into a kernel id in the mount's idmapping. */
make_kuid(mount, uid) = kuid

· mapped_fsuid()

· Remap caller kernel fsids according to the mount idmapping
/* Map the caller's kernel id up into a userspace id in the mount's idmapping. */
from_kuid(mount-idmapping, kid) = uid

/* Map the mount's userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(filesystem-idmapping, uid) = kuid

Filesystem Use-Cases revisited

home directories, containers, and service isolation with idmapped mounts

ELT layout

Portable Home Directories

vfs_mkdir()

· caller id: u60001
caller idmapping: u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping: u65534:k60001:r1 /* Of course, systemd will map way more IDs than that */

· Map the caller's userspace ids into kernel ids in the caller's idmapping
make_kuid(u0:k0:r4294967295, u60001) = k60001 /* current_fsuid() */

· Translate caller's kernel id into a kernel id in the filesystem's idmapping
mapped_fsuid(k60001)
 /* Map the kernel id up into a userspace id in the mount's idmapping. */
 from_kuid(u65534:k60001:r1, k60001) = u65534

 /* Map the userspace id down into a kernel id in the filesystem's idmapping. */
 make_kuid(u0:k0:r4294967295, u65534) = k65534

· Verify that the caller's kernel ids can be mapped to userspace ids in the filesystem's idmapping
from_kuid(u0:k0:r4294967295, k65534) = u65534 /* VFS to Disk */

· So ultimately the file will be created with raw uid 65534 on disk.

ELT layout

Portable Home Directories

vfs_getattr() + cp_statx()

· caller id: u60001
caller idmapping: u0:k0:r4294967295
filesystem idmapping: u0:k0:r4294967295
mount idmapping: u65534:k60001:r1 /* Of course, systemd will map way more IDs than that */

· Map the userspace id on disk down into a kernel id in the filesystem's idmapping
make_kuid(u0:k0:r4294967295, u65534) = k65534 /* i_uid_write() */

· Translate the kernel id into a kernel id in the mount's idmapping
i_uid_into_mnt(k65534)
 /* Map the kernel id up into a userspace id in the filesystem's idmapping. */
 from_kuid(u0:k0:r4294967295, k65534) = u65534

 /* Map the userspace id down into a kernel id in the mounts's idmapping. */
 make_kuid(u65534:k60001:r1, u65534) = k60001

· Map the kernel id up into a userspace id in the caller's idmapping
from_kuid(u0:k0:r4294967295, k60001) = u60001 /* VFS to Userspace */

· So ultimately the caller will be reported that the file belongs to raw uid 60001 which is the caller's userspace id in our example.

UAPI

How to create idmapped mounts

ELT layout

mount_setattr()

struct mount_attr *attr = &(struct mount_attr){};

/* create private, detached (not reachable anywhere in the filesystem) mount */

int fd_tree = open_tree(-EBADF, source,

 OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC |

 AT_EMPTY_PATH | AT_RECURSIVE);

attr->attr_set |= MOUNT_ATTR_IDMAP;

attr->userns_fd = fd_userns;

mount_setattr(fd_tree, "", AT_EMPTY_PATH | AT_RECURSIVE,

 attr, sizeof(struct mount_attr));

Demo
A few simple examples

Support & adoption

Filesystem support and userspace adoption

ELT layout

Filesystem support

v5.12

· ext4

· fat (msdos, vfat)

· xfs

v5.15

· btrfs

· ntfs3

v5.18

· f2fs

v5.19

· erofs

· overlayfs (mounted on top of idmapped lower- and upper layers)

ELT layout

Userspace support

· systemd

· containerd

· crun

· runC

· LXC

· LXD

· Podman

· Open Container Initiative (OCI) runtime spec

· mount(2) in util-linux

Thank you

