
1

Formal modeling (and verification) made easy
And fast!

Daniel Bristot de Oliveira
Principal Software Engineer

2

Linux is complex.

3

Linux is critical.

4

We need to be sure that Linux
behaves as _expected_ .

5

What do we _expect_?

6

What do we _expect_?
- We have a lot of documentation explaining what is expected!

- In many different languages!
- We have a lot of “ifs” that asserts what is expected!
- We have lots of tests that check if part of the system behaves as

expected!

7

These things are good!
But we need something
more robust.

8

Like...
- How do we check that our reasoning is right?
- How do we check that our asserts are not contradictory?
- How do we check that we are covering all cases?
- How do we verify the runtime behavior of Linux?

9

How do we convince
other communities
about our properties?

10

What computer
scientists say about it?

11

Formal methods!

12

We already have some
examples!

13

But we need a more
“generic” and “intuitive
way” for modeling.

14

How can we turn modeling easier?
- Using a formal language that looks natural for us!
- How do we naturally “observe” the dynamics of Linux?

15

We trace events!

16

While tracing we...

^C^V from
https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

https://www.geeksforgeeks.org/states-of-a-process-in-operating-systems/

17

State-machines + FM = Automata!
- State machines are Event-driven systems
- Event-driven systems describe the system evolution as trace of events
- As we do for run-time analysis.

 tail-5572 [001]1.. 2888.401184: preempt_enable: caller=_raw_spin_unlock_irqrestore+0x2a/0x70 parent= (null)
 tail-5572 [001]1.. 2888.401184: preempt_disable: caller=migrate_disable+0x8b/0x1e0 parent=migrate_disable+0x8b/0x1e0
 tail-5572 [001]111 2888.401184: preempt_enable: caller=migrate_disable+0x12f/0x1e0 parent=migrate_disable+0x12f/0x1e0
 tail-5572 [001] d..h212 2888.401189: local_timer_entry: vector=236

18

Using automata as formal language

q0 q2
open

q1readclose
write

19

Is formally defined
- Automata is a method to model Discrete Event Systems (DES)
- Formally, an automaton G is defined as:

- G = {X , E, f , x0 , Xm }, where:
- X = finite set of states;
- E = finite set of events;
- F is the transition function = (X x E) → X;
- x

0
 = Initial state;

- Xm = set of final states.
- The language - or traces - generated/recognized by G is the L(G).

20

Automata allows
- The verification of the model

- Deadlock free? Live-lock free?
- Operations

- Modular development

21

The previous example

q0 q2
open

q1readclose
write

22

Generators

closed opened
open
close

ready waiting
write
read

23

Sync of generators

ready.closed

ready.openedopen

waiting.closedwrite
close

waiting.openedwrite

read

open
read

close

24

Specification

S0 S1
open

write
read

S0

close

S1
write
read

25

Verification

26

Synch of Generators and Specifications

q0 q4
open

q1q3 read

q2read
write

write

close

27

Specifications

S0 S1
open
close

write
read

S0

close

S1
write
read

28

Sync of Generators and Specifications

q0 q2
open

q1readclose
write

29

Why not just draw it?

30

Linux is Complex!

31

PREEMPT_RT model
- The PREEMPT RT task model has:

- 9017 states!
- 23103 transitions!
- But:

- 12 generators
- 33 specifications

- During development found 3 bugs that would not be detected by other tools...

32

A more complex case

33

Independend “generators”

34

Independend “generators”

35

● Formal verification made easy and fast - Linux Plumbers Conference 2019

Independend “generators”

36

Necessary conditions

37

Necessary conditions

38

Necessary conditions

39

Necessary conditions

40

Sufficient conditions

41

“PREEMPT”_RT is deterministic

42

Academically accepted
Untangling the Intricacies of Thread Synchronization in the PREEMPT_RT Linux Kernel.
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira & Tommaso Cucinotta
2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC)

Modeling the Behavior of Threads in the PREEMPT_RT Linux Kernel Using Automata
Daniel Bristot de Oliveira, Tommaso Cucinotta & Romulo Silva De Oliveira
8th Embedded Operating Systems Workshop (EWiLi 2018)

Automata-Based Modeling of Interrupts in the Linux PREEMPT RT Kernel
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira, Tommaso Cucinotta and Luca Abeni
Proceedings of the 22nd IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA 2017)

43

How to verify that the
system _behaves_?

44

Comparing system
execution against the
model!

45

Offline & Asynchronous

46

But...

47

What can we do?

48

Online & Synchronous RV

49

1) Code generation
- We develop the dot2c tool to translate the model into code
- It is a python program that has one input:

- An automaton model in the .dot format
- It is an open format (graphviz)
- Supremica tool exports models with this format

50

Code generation

[bristot@t460s dot2c]$./dot2c wakeup_in_preemptive.dot

…..

Wakeup in preemptive model:

Code generation:

51

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};

struct automaton {
char *state_names[state_max];
char *event_names[event_max];
char function[state_max][event_max];
char initial_state;
char final_states[state_max];

};

52

Automaton in C
enum states {

preemptive = 0,
non_preemptive,
state_max

};

enum events {
preempt_disable = 0,
preempt_enable,
sched_waking,
event_max

};
....
struct automaton aut = {

.event_names = { "preempt_disable", "preempt_enable", "sched_waking" },

.state_names = { "preemptive", "non_preemptive" },

.function = {
{ non_preemptive, -1, -1 },
{ -1, preemptive, non_preemptive },

},
.initial_state = preemptive,
.final_states = { 1, 0 }

};

53

Processing functions

54

Processing one event
char process_event(struct verification *ver, enum events event)
{

int curr_state = get_curr_state(ver);
int next_state = get_next_state(ver, curr_state, event);

if (next_state >= 0) {
set_curr_state(ver, next_state);

debug("%s -> %s = %s %s\n",
 get_state_name(ver, curr_state),
 get_event_name(ver, event),
 get_state_name(ver, next_state),
 next_state ? "" : "safe!");

return true;
}

error("event %s not expected in the state %s\n",
get_event_name(ver, event),
get_state_name(ver, curr_state));

stack(0);

return false;
}

55

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

56

Processing one event
char *get_state_name(struct verification *ver, enum states state)
{

return ver->aut->state_names[state];
}

char *get_event_name(struct verification *ver, enum events event)
{

return ver->aut->event_names[event];
}

char get_next_state(struct verification *ver, enum states curr_state, enum events event)
{

return ver->aut->function[curr_state][event];
}

char get_curr_state(struct verification *ver)
{

return ver->curr_state;

}

void set_curr_state(struct verification *ver, enum states state)
{

ver->curr_state = state;
}

All operations are O(1)!

Only one variable to keep the state!

57

3) Verification

58

Verification
- Verification code is compiled as a kernel module
- Kernel module is loaded to a running kernel

- While no problem is found:
- Either print all event’s execution
- Or run silently

- If an unexpected transitions is found:
- Print the error on trace buffer

59

Error output
 bash-1157 [003]2.. 191.199172: process_event: non_preemptive -> preempt_enable = preemptive safe!
 bash-1157 [003] dN..5.. 191.199182: process_event: event sched_waking not expected in the state preemptive
 bash-1157 [003] dN..5.. 191.199186: <stack trace>
 => process_event
 => __handle_event
 => ttwu_do_wakeup
 => try_to_wake_up
 => irq_exit
 => smp_apic_timer_interrupt
 => apic_timer_interrupt
 => rcu_irq_exit_irqson
 => trace_preempt_on
 => preempt_count_sub
 => _raw_spin_unlock_irqrestore
 => __down_write_common
 => anon_vma_clone
 => anon_vma_fork
 => copy_process.part.42
 => _do_fork
 => do_syscall_64
 => entry_SYSCALL_64_after_hwframe

60

Practical example
- A problem with tracing subsystem was reported using this model’s module

- https://lkml.org/lkml/2019/5/28/680
<recall to open the link>

61

There is not free meal!

62

The price is in the data structure
- The vectors and matrix are not “compact” data structure
- BUT!
- The PREEEMPT_RT model, with:

- 9017 states!
- 23103 transitions!
- Compiles in a module with < 800KB
- Acceptable, no?

63

In practice... also..
- Complete models like the PREEMPT_RT are not necessarily need.
- Small models can be created as “test cases”
- For example:

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

64

How _efficient_ is this
idea?

65

Efficiency in practice: a benchmark
- Two benchmarks

- Throughput: Using the Phoronix Test Suite
- Latency: Using cyclictest

- Base of comparison:
- as-is: The system without any verification or trace.
- trace: Tracing (ftrace) the same events used in the verification

- Only trace! No collection or interpretation.

66

Throughput: SWA model

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

67

Benchmark: Thoughput – Low kernel activation

68

Benchmark: Thoughput – High kernel activation

69

Benchmark: Cyclictest latency

70

Academically accepted
Efficient Formal Verification for the Linux Kernel
Daniel Bristot de Oliveira, Rômulo Silva de Oliveira & Tommaso Cucinotta
17th International Conference on Software Engineering and Formal Methods (SEFM)

More info here: http://bristot.me/efficient-formal-verification-for-the-linux-kernel/

71

So...

72

So...
- It is possible to model complex behavior of Linux

- Using a formal language
- Creating big models from small ones

- It is possible to verify properties of models
- And so properties of the system
- Bonus: It is possible to use other more complex methods by using the automata

- LTL and so on
- It is possible to verify the runtime behavior of Linux

73

What’s next?
- Better interface

- Working in a perf/ebpf version of the runtime verification part
- And also working with a “ftrace” like interface
- Then I will compare both

- Documenting the process in a “linux developer way”
- IOW: translating the papers into LWN articles

74

What should we model?
- There are other possible things to model

- Locking (part of lockdep)
- Why?
- Run-time without recompile/reboot.

- RCU?
- Schedulers?

75

Worth Mentioning

76

Something else?

77

Thank you!

This work is made in collaboration with:

the Retis Lab @ Scuola Superiore Sant’Anna (Pisa – Italy)

Universidade Federal de Santa Catarina (Florianópolis - Brazil)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

