Coming soon

- N
o
Thomas Gleixner — Kernel Recipes 2023

Coming soon?

On preempt_model_none() or preempt_model_voluntary() configurations
rescheduling of kernel threads happens only when they allow it, and only at
explicit preemption points, via calls to cond_resched() or similar. That leaves
out contexts where it is not convenient to periodically call cond_resched() --
for instance when executing a potentially long running primitive (such as
REP; STOSB.)

This means that we either suffer high scheduling latency or avoid certain
constructs.

Define TIF_ALLOW_RESCHED to demarcate such sections. A g

Preemption models

* PREEMPT_NONE
* PREEMPT _VOLUNTARY
*PREEMPT_FULL

* PREEMPT_RT

Preemption model NONE

* Preemptive multitasking in userspace
Timeslicing, priority

* Cooperative multitasking in the kernel

* Kernel code runs to completion
Preemption point on return to user space

Task invokes schedule()

Preemption model NONE

Return to kernel
Scheduler

Interrupt

NEED RESCHED

Return to user work

Userspace

Preemption model NONE

* What could go wrong?

Long running tasks can cause latencies

Long running tasks can starve the system

e Detectab
Schedu

e but no mitigation possible

er has no knowledge whether

preemption Is safe

Preemption model NONE

* How to prevent latencies and starvation?
Manual placement of voluntary scheduling

opportunities, i.e. cond_resched()

static inline void cond resched(void)

{

if (need resched())
schedule();

}

Preemption model NONE

cond_resched()
NEED_RESCH ED ‘ Scheduler

NEED_RESCHED

Return to user work

Userspace

Preemption model NONE

* cond_resched()

for (i = 0; i < limit; i++) {
process(data[il);

}

for (1 = 0; 1 < limit; i++) { for (i = 0; i < limit; i++) {

mutex lock(m); mutex_lock(m);
process(datal[il); process(datal[il]);
cond resched(); mutex_unlock(m);

mutex unlock(m);

} }

Preemption model VOLUNTARY

* Same properties as NONE
* Additional opportunistic preemption points

might_sleep()

Preemption model VOLUNTARY

cond_resched()

might_resched()
NEED RESCHED Scheduler

NEED_RESCHED

Return to user work

Userspace

Preemption model VOLUNTARY
* might_sleep()
might_sleep() Is a debug mechanism
cond_resched() Is glued Into it
Easy to misplace
Automatically injected by lock and wait

primitives

Preemption model VOLUNTARY

might_sleep()

wait for completion(&c);
return to userspace(); « Preemption point

Qéit_for_completion(c)
might sleep()

cond_resched (); « Preemption point
while (!complete(c)
schedule();

return to userspace(); « Preemption point

The embedded cond_resched() can result in
redundant task switching

Preemption model VOLUNTARY

might_sleep()

mutex lock(A);
mutex lock(B);
do work();
mutex unlock(B);
mutex unlock(A);
mutex lock(A);
mutex lock(B)

might sleep()
cond resched(); « Preemption point

The embedded cond_resched() can result in
redundant task switching and lock contention on
mutex A.

Preemption model VOLUNTARY

* Provides better latencies than NONE
e Otherwise the same Issues as NONE

* More contention possible

Preemption model FULL

* Full preemptive multitasking
Timeslicing, priority
Restricted in non-preemptible kernel code

sections

Preemption model FULL

* Implicit non-preemptible kernel code sections
'spin|rw]locks are held

'soft]interrupts and exceptions

ocal_irg_disable(), local_bh_disable()
Per CPU accessors
* Explicit non-preemptible kernel code sections

preempt_disable()

Preemption model FULL

* Non-preemptible sections
Prevent preemption
Prevent migration
No blocking operations allowed
* Migration prevention can be made preemptible

migrate disable()

Preemption model FULL

preempt_enable() Return to kernel
NEED_RESCHED Scheduler NEED_RESCHED?

S Bl i S
.

Interrupt

NEED_RESCHED

Return to user work

Userspace

Preemption model FULL

* Scheduler knows when preemption is safe
Reduced latencies
Agressive preemption can cause contention

Tradeoff versus throughput

Preemption model RT

* Full preemptive multitasking
Preemption model is the same as FULL

* RT further reduces non-preemtible sections
[spin|rw|local]locks become sleeping locks
Most interrupt handlers are force threaded

Soft interrupt handling Is force threaded

Preemption model RT

* Further restrictions for non-preemptible sections
No memory allocations or other functions which
might acquire rw/spinlocks as they are sleepable In
RT

 Same benefits and tradeoffs as FULL, but:
Smaller worst case latencies

More tradeoff versus throughput

Preemption model RT

* The throughput tradeoff
Affects usually non-realtime workloads
Caused by overeager preemption and the

resulting lock and resource contentions

Preemption model RT

* Mitigating the throughput tradeoft
LAZY preemption mode for non-RT tasks
lock held sections disable lazy preemption

Still can be force preempted by the scheduler

Preemption model NONE/VOLUNTARY woes

* X86 REP MOV/STO for memcpy()/set()
Very efficient
Can be interrupted, but NONE and VOLUNTARY
cannot preempt
Large copies/clears cause latencies
Chunk based loop processing required with

cond_resched() which fails to utilize hardware

Preemption model NONE/VOLUNTARY woes

* Proposed solution: TIF_ALLOW_RESCHED
Wrapped in allow_resched() and
disallow resched()

Annotate sections which are safe to preempt
on NONE and VOLUNTARY

Preemption model NONE/VOLUNTARY woes

* Seriously?
cond_resched(), might_sleep(), preempt_disable(),
preempt_enable(), allow_resched(),
disallow_resched()
The reverse semantics of preempt_disable() and .

¥
allow_resched() are just bad Y-

\ (J

Let’s take a step back

* The goal is to avoid preemption on NONE and
VOLUNTARY

* Preemption on time slice exhaustion should be
enforcable even on NONE and VOLUNTARY

* NONE and VOLUNTARY do not know about

preemption safety

Let’s take a step back

* Preempt counter is not longer expensive

e Usually enabled anyway due to dynamic
preemption model switching
* All preemption models can know when

preemption Is safe

Preemption model reduction

* Enforce preempt counter enablement
* Provide lazy preemption similar to RT

TIF NEED RESCHED LAZY

Lazy preemption only on return to userspace
* Enforced preemption: TIF_ NEED RESCHED

Preemption model reduction

* NONE/VOLUNTARY: TIF_ RESCHED_ LAZY used for
SCHED OTHER

* Timeslice exhaustion enforces preemption with
TIF. NEED RESCHED

 FULL: Switch SCHED OTHER to
TIF. NEED RESCHED

Preemption model reduction

preempt_enable() Return to kernel
NEED_RESCH ED Scheduler NEED_RESCHED?

S B sl
-

Interrupt

NEED_RESCHED
NEED_RESCHED_LAZY

Return to user work

Userspace

Preemption model reduction

* Gives full control to the scheduler
VOLUNTARY semantics can be handled in the
scheduler itself

* Allows to remove cond_resched()

* Avoids new Ill defined annotations
Eventually proper hinting required

e Can be utilized for RT with minimal effort

Sc

Preemption model reduction

neduler hints for lazy preemption

f required must be scope based
Proper nesting

Embeddable into locking primitives

preempt lazy disable(); // Please avoid preemption
do_prep();
do stuff()
mutex lock(m)
preempt lazy disable();

&htex_unlock(m)
preempt lazy enable();
preempt lazy enable(); // Now its fine to preempt

Preemption model reduction

* One preemption model with runtime switching

solely at the scheduler leve

* RT still separate and compile time selected
* PoC works and looks promising.

* A few museum architectures in the way.

Coming soon?

17! RiDIcuLoLs!
WE NEED To DE

SITUATION: || SEUNERAL SHRD 1 GiTUATION:

THERE ARE USE CASES. ey THERE ARE

W4 COMPETING Y5 COMPETING

—STANDRRDS. \ O) —CTANDERDS,
PREEMPTION PREEMPTION
MODELS. MODELS.

4
-3

|
|

