

Coming soon

Thomas Gleixner – Kernel Recipes 2023

Coming soon?

On preempt_model_none() or preempt_model_voluntary() configurations

rescheduling of kernel threads happens only when they allow it, and only at

explicit preemption points, via calls to cond_resched() or similar. That leaves

out contexts where it is not convenient to periodically call cond_resched() --

for instance when executing a potentially long running primitive (such as

REP; STOSB.)

This means that we either suffer high scheduling latency or avoid certain

constructs.

Define TIF_ALLOW_RESCHED to demarcate such sections.

Preemption models

● PREEMPT_NONE

● PREEMPT_VOLUNTARY

● PREEMPT_FULL

● PREEMPT_RT

Preemption model NONE

● Preemptive multitasking in userspace

● Timeslicing, priority

● Cooperative multitasking in the kernel

● Kernel code runs to completion

● Preemption point on return to user space

● Task invokes schedule()

Preemption model NONE

Preemption model NONE

● What could go wrong?

● Long running tasks can cause latencies

● Long running tasks can starve the system

● Detectable but no mitigation possible

● Scheduler has no knowledge whether

preemption is safe

Preemption model NONE

● How to prevent latencies and starvation?

● Manual placement of voluntary scheduling

opportunities, i.e. cond_resched()
static inline void cond_resched(void)
{

if (need_resched())
schedule();

}

Preemption model NONE

Preemption model NONE

● cond_resched()
for (i = 0; i < limit; i++) {

process(data[i]);
cond_resched();

}

for (i = 0; i < limit; i++) {
mutex_lock(m);
process(data[i]);
cond_resched();
mutex_unlock(m);

}

for (i = 0; i < limit; i++) {
mutex_lock(m);
process(data[i]);
mutex_unlock(m);
cond_resched();

}

Preemption model VOLUNTARY

● Same properties as NONE

● Additional opportunistic preemption points

● might_sleep()

Preemption model VOLUNTARY

Preemption model VOLUNTARY

● might_sleep()

● might_sleep() is a debug mechanism

● cond_resched() is glued into it

● Easy to misplace

● Automatically injected by lock and wait

primitives

Preemption model VOLUNTARY

might_sleep()
...
wait_for_completion(&c);
return_to_userspace(); ← Preemption point

...
wait_for_completion(c)

might_sleep()

cond_resched(); ← Preemption point
while (!complete(c)

schedule();
return_to_userspace(); ← Preemption point

The embedded cond_resched() can result in
redundant task switching

Preemption model VOLUNTARY

might_sleep()
mutex_lock(A);
mutex_lock(B);
do_work();
mutex_unlock(B);
mutex_unlock(A);

mutex_lock(A);
mutex_lock(B)

might_sleep()
cond_resched(); ← Preemption point

The embedded cond_resched() can result in
redundant task switching and lock contention on
mutex A.

Preemption model VOLUNTARY

● Provides better latencies than NONE

● Otherwise the same issues as NONE

● More contention possible

Preemption model FULL

● Full preemptive multitasking

● Timeslicing, priority

● Restricted in non-preemptible kernel code

sections

Preemption model FULL

● Implicit non-preemptible kernel code sections

● [spin|rw]locks are held

● [soft]interrupts and exceptions

● local_irq_disable(), local_bh_disable()

● Per CPU accessors

● Explicit non-preemptible kernel code sections

● preempt_disable()

Preemption model FULL

● Non-preemptible sections

● Prevent preemption

● Prevent migration

● No blocking operations allowed

● Migration prevention can be made preemptible

● migrate_disable()

Preemption model FULL

Preemption model FULL

● Scheduler knows when preemption is safe

● Reduced latencies

● Agressive preemption can cause contention

● Tradeoff versus throughput

Preemption model RT

● Full preemptive multitasking

● Preemption model is the same as FULL

● RT further reduces non-preemtible sections

● [spin|rw|local]locks become sleeping locks

● Most interrupt handlers are force threaded

● Soft interrupt handling is force threaded

Preemption model RT

● Further restrictions for non-preemptible sections

● No memory allocations or other functions which

might acquire rw/spinlocks as they are sleepable in

RT

● Same benefits and tradeoffs as FULL, but:

● Smaller worst case latencies

● More tradeoff versus throughput

Preemption model RT

● The throughput tradeoff

● Affects usually non-realtime workloads

● Caused by overeager preemption and the

resulting lock and resource contentions

Preemption model RT

● Mitigating the throughput tradeoff

● LAZY preemption mode for non-RT tasks

● lock held sections disable lazy preemption

● Still can be force preempted by the scheduler

Preemption model NONE/VOLUNTARY woes

● X86 REP MOV/STO for memcpy()/set()

● Very efficient

● Can be interrupted, but NONE and VOLUNTARY

cannot preempt

● Large copies/clears cause latencies

● Chunk based loop processing required with

cond_resched() which fails to utilize hardware

Preemption model NONE/VOLUNTARY woes

● Proposed solution: TIF_ALLOW_RESCHED

● Wrapped in allow_resched() and

disallow_resched()

● Annotate sections which are safe to preempt

on NONE and VOLUNTARY
https://lore.kernel.org/lkml/20230830184958.2333078-8-ankur.a.arora@oracle.com

Preemption model NONE/VOLUNTARY woes

● Seriously?

● cond_resched(), might_sleep(), preempt_disable(),

preempt_enable(), allow_resched(),

disallow_resched()

● The reverse semantics of preempt_disable() and

allow_resched() are just bad

Let’s take a step back

● The goal is to avoid preemption on NONE and

VOLUNTARY

● Preemption on time slice exhaustion should be

enforcable even on NONE and VOLUNTARY

● NONE and VOLUNTARY do not know about

preemption safety

Let’s take a step back

● Preempt counter is not longer expensive

● Usually enabled anyway due to dynamic

preemption model switching

● All preemption models can know when

preemption is safe

Preemption model reduction

● Enforce preempt counter enablement

● Provide lazy preemption similar to RT

● TIF_NEED_RESCHED_LAZY

● Lazy preemption only on return to userspace

● Enforced preemption: TIF_NEED_RESCHED

Preemption model reduction

● NONE/VOLUNTARY: TIF_RESCHED_LAZY used for

SCHED_OTHER

● Timeslice exhaustion enforces preemption with

TIF_NEED_RESCHED

● FULL: Switch SCHED_OTHER to

TIF_NEED_RESCHED

Preemption model reduction

Preemption model reduction

● Gives full control to the scheduler

● VOLUNTARY semantics can be handled in the

scheduler itself

● Allows to remove cond_resched()

● Avoids new ill defined annotations

● Eventually proper hinting required

● Can be utilized for RT with minimal effort

Preemption model reduction

Scheduler hints for lazy preemption
● If required must be scope based
● Proper nesting
● Embeddable into locking primitives
preempt_lazy_disable(); // Please avoid preemption
do_prep();
do_stuff()

mutex_lock(m)
preempt_lazy_disable();

…
 mutex_unlock(m)

preempt_lazy_enable();
preempt_lazy_enable(); // Now its fine to preempt

Preemption model reduction

● One preemption model with runtime switching

solely at the scheduler level

● RT still separate and compile time selected

● PoC works and looks promising.

● A few museum architectures in the way.

https://lore.kernel.org/lkml/87jzshhexi.ffs@tglx/

Coming soon?

https://xkcd.com/927/

X

X

X

PREEMPTION
MODELS.

 MODEL

PREEMPTION
MODELS.

