
Powerful and Programmable

Kernel Debugging with drgn
KERNEL RECIPES 2022

Omar Sandoval

https://github.com/osandov/drgn

https://github.com/osandov/drgn


What Is drgn?

• “Programmable debugger”

• Wraps up target’s variables and types so that

they can be used from Python

• Works on the live Linux kernel and kernel core

dumps (and userspace programs)

• Provides a library of kernel-specific “helpers” for

common data structures



Why drgn?

• I came up against some very tricky bugs

• Existing tools weren’t enough
• GDB’s scripting interface and Linux kernel support were clunky
• Crash wasn’t flexible enough
• BPF, ftrace, printk don’t work for post-mortem debugging

• Designed to be usable as a library



Tutorial



Review

# Look up a global variable.
variable = prog["variable"]

# Operate on the variable.
variable.member + 1

# View helpers.
help(drgn.helpers.linux)

# Get a stack trace for a thread ID.
trace = prog.stack_trace(123)

# Get a stack frame.
frame = trace[1]

# Look up a local variable.
variable = frame["variable"]



Case Study



Case Study Background

• Got a bug report that container creation was failing with ENOSPC

• Using strace and retsnoop, found that this was coming from a limit on

the number of IPC namespaces

• But we only had a handful of IPC namespaces

https://github.com/anakryiko/retsnoop


Advantages of DebuggingWith drgn

• Feels like programming!

• Familiar environment for both C and Python coders

• Scripts can be reused, shared



Implementation

• libdrgn: C library implementing core functionality
• Core abstractions
• DWARF debugging information parsing
• Memory reading (/proc/kcore, core dumps, /proc/<pid>/mem)
• Language emulation

• Python bindings for libdrgn

• Helpers: Python code using core drgn library to provide common

functionality

• Command line interface



Limitations

• Racy for live targets

• Helpers need to be kept in sync with kernel changes
• drgn has an extensive test suite run against many kernel versions

• Needs DWARF



DWARF-Less Debugging

• Kernel is almost self-describing thanks to BTF, ORC, and kallsyms

• With a bit more information, can use (most of) drgn without DWARF
• Work in progress by Stephen Brennan

• Mainly: need to add all variables to BTF (~4MB -> ~6MB)



Beyond Debugging

• Originally envisioned as just an interactive debugger

• But designed as generic API for introspecting programs

• Enables manymore use cases
• Learning tool
• Automation
• Replacing in-kernel introspection (e.g., debugfs)
• Userspace memory profiling?!



FutureWork

• Always adding more helpers, tools

• Debug info discovery improvements (including DWARF-less debugging)

• Making more information accessible programmatically

• Feature parity on other architectures

• Better support for userspace and C++

• Tracing APIs (breakpoints, single stepping, etc. via ptrace, gdbstub)



Conclusion

• drgnmakes it easy to debug large, complex

programs like the Linux kernel

• Has powerful building blocks that can be used for

other use cases

• Try it! File feature requests, bug reports, and pull

requests at https://github.com/osandov/drgn

• Questions?

https://github.com/osandov/drgn


Conclusion

• drgnmakes it easy to debug large, complex

programs like the Linux kernel

• Has powerful building blocks that can be used for

other use cases

• Try it! File feature requests, bug reports, and pull

requests at https://github.com/osandov/drgn

• Questions?

https://github.com/osandov/drgn



	

