Powerful and Programmable
Kernel Debugging with drgn

KERNEL RECIPES 2022

Omar Sandoval

https://github.com/osandov/drgn N Meta

https://github.com/osandov/drgn

What Is drgn?

* “Programmable debugger”

® Wraps up target’s variables and types so that
they can be used from Python

e Works on the live Linux kernel and kernel core
dumps (and userspace programs)

® Provides a library of kernel-specific “helpers” for
common data structures

Why drgn?

® | came up against some very tricky bugs
e Existing tools weren’t enough

® GDB'’s scripting interface and Linux kernel support were clunky
® Crash wasn'’t flexible enough
® BPF, ftrace, printk don’t work for post-mortem debugging

e Designed to be usable as a library

Tutorial

Review

Look up a global variable.
variable = prog["variable"]

Operate on the variable.
variable.member + 1

View helpers.
help(drgn.helpers.linux)

Get a stack trace for a thread ID.
trace = prog.stack trace(123)

Get a stack frame.
frame trace[1l]

Look up a local variable.
variable = frame["variable"]

Case Study

Case Study Background

® Got a bug report that container creation was failing with ENOSPC

e Using strace and retsnoop, found that this was coming from a limit on
the number of IPC namespaces

¢ But we only had a handful of IPC namespaces

https://github.com/anakryiko/retsnoop

Advantages of Debugging With drgn

® Feels like programming!
e Familiar environment for both C and Python coders
e Scripts can be reused, shared

Implementation

libdrgn: C library implementing core functionality
® Core abstractions
DWARF debugging information parsing
Memory reading (/proc/kcore, core dumps, /proc/<pid>/mem)
Language emulation

Python bindings for libdrgn

Helpers: Python code using core drgn library to provide common
functionality

Command line interface

Limitations

¢ Racy for live targets
® Helpers need to be kept in sync with kernel changes
® drgn has an extensive test suite run against many kernel versions

e Needs DWARF

DWARF-Less Debugging

e Kernelis almost self-describing thanks to BTF, ORC, and kallsyms
e With a bit more information, can use (most of) drgn without DWARF
® Work in progress by Stephen Brennan

® Mainly: need to add all variables to BTF (~4MB -> ~6MB)

Beyond Debugging

¢ Originally envisioned as just an interactive debugger
e But designed as generic API for introspecting programs

® Enables many more use cases

® | earning tool

® Automation

® Replacing in-kernel introspection (e.g., debugfs)
® Userspace memory profiling?!

Future Work

Always adding more helpers, tools
Debug info discovery improvements (including DWARF-less debugging)
Making more information accessible programmatically

Feature parity on other architectures

Better support for userspace and C++
Tracing APls (breakpoints, single stepping, etc. via ptrace, gdbstub)

Conclusion

e drgn makes it easy to debug large, complex
programs like the Linux kernel

¢ Has powerful building blocks that can be used for
other use cases

e Try it! File feature requests, bug reports, and pull
requests at https://github.com/osandov/drgn

https://github.com/osandov/drgn

Conclusion

drgn makes it easy to debug large, complex
programs like the Linux kernel

Has powerful building blocks that can be used for
other use cases

Try it! File feature requests, bug reports, and pull
requests at https://github.com/osandov/drgn

Questions?

https://github.com/osandov/drgn

N Meta

	

