
Software and Services Group

Embedded Linux and the mainline kernel
David Woodhouse

Kernel Recipes

September 2012

2

Software and Services Group 2

Where does Linux run?

Embedded control device... phone...
PDA... Internet tablet... router...
media device... netbook... laptop...
desktop... server... supercomputer...

3

Software and Services Group 3

“Embedded”...?

• Control equipment

• Phones

• PDAs

• “Internet Tablets”

• Routers

• Televisions

• VCR / PVR / DVD / Media

• Netbooks (?)

4

Software and Services Group 4

“Embedded”...?

• Headless?

• Handheld?

• Power source?

• Physical size?

• Limited RAM?

• Storage?

• Other...

5

Software and Services Group 5

Embedded needs

• Power management

• Fast startup

• Headless operation

• Uncluttered user interfaces

• Solid state storage

6

Software and Services Group 6

Embedded needs

• Power management

• Fast startup

• Headless operation

• Uncluttered user interfaces

• Solid state storage

Other users need these features too!

7

Software and Services Group 7

Power Management

• Battery life

8

Software and Services Group 8

Power Management

• Battery life

• Cost of power consumption

• Heat output

9

Software and Services Group 9

Tickless operation

• Power savings

10

Software and Services Group 10

Tickless operation

• Power savings

• Scalability for virtualisation

11

Software and Services Group 11

Fast boot

• Hard limits for mobile telephones

• User experience for consumer electronics

12

Software and Services Group 12

Fast boot

• Hard limits for mobile telephones

• User experience for consumer electronics

• Server availability

13

Software and Services Group 13

User interfaces

• Ease of use for consumer equipment

14

Software and Services Group 14

User interfaces

• Ease of use for consumer equipment

• ... and for everyone else:
– OLPC / Sugar

– Netbooks

– Simple desktop environments

15

Software and Services Group 15

Solid state storage

• FLASH storage in “embedded” devices

16

Software and Services Group 16

Solid state storage

• FLASH storage in “embedded” devices

• Solid State Disk

17

Software and Services Group 17

Others...

• Execute in place (XIP)
– From FLASH for embedded systems

– Shared file system data under virtualisation

• DMA API usage
– For cache coherency on embedded systems (ARM, some PPC)

– For IOMMU on larger systems

18

Software and Services Group 18

We are not so
special!

19

Software and Services Group 19

Community impressions

• “Enterprise” Linux

• “Embedded” Linux

20

Software and Services Group 20

Community impressions

• “Enterprise” Linux

• “Embedded” Linux
– Working with old code

– Not working with upstream

– Inclined towards “special” one-off hacks

– Irrelevant to the general case

21

Software and Services Group 21

Community impressions

• “Enterprise” Linux

• “Embedded” Linux
– Working with old code

– Not working with upstream

– Inclined towards “special” one-off hacks

– Irrelevant to the general case

We must prove them wrong!

22

Software and Services Group 22

“Embedded” success stories

• Tickless

• Preemptive kernel

• Power management

• Suspend to RAM

• Solid state storage

• Squashfs

23

Software and Services Group 23

Working with the community

• Find generic points of interest

• Publish early and often
– In git trees

– Separate trees for separate development efforts

– Also send patches for review

• Solicit and respond to feedback

• Work with upstream maintainers

• BE PART OF THE COMMUNITY!

24

Software and Services Group 24

Staying close to upstream

• Advantages
– Easier for product updates and new products

– Easy to use fixes and new features

– External contributions

– Code review and testing

• Costs
– Writing acceptable code can be hard and takes time

– Upstream kernel is a fast-moving target

– Releasing information may be difficult

25

Software and Services Group 25

Tips on contributing code

• Avoid hacking around problems

• Avoid overengineering

• Care about locking

• Coding Style

• Submit patches carefully

26

Software and Services Group 26

Coding Style

• Simple, short functions

• Avoid:
– typedefs

– StudlyCaps

– Hungarian Notation

• Read Documentation/CodingStyle

http://www.linux.or.jp/JF/JFdocs/kernel-docs-
2.6/CodingStyle.html

27

Software and Services Group 27

Submitting Patches

• Read the patch before you send it
--- a/drivers/net/wireless/libertas/assoc.c
+++ b/drivers/net/wireless/libertas/assoc.c
@@ -13,6 +13,7 @@

 static const u8 bssid_any[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
 static const u8 bssid_off[ETH_ALEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char
*str);

 static void print_assoc_req(const char * extra, struct assoc_request * assoc_req)
 {
@@ -211,9 +212,17 @@ static int assoc_helper_channel(wlan_private *priv,
 {
 wlan_adapter *adapter = priv->adapter;
 int ret = 0;
+ int restart_mesh = 0;

 lbs_deb_enter(LBS_DEB_ASSOC);

+ if(adapter->mesh_connect_status == LIBERTAS_CONNECTED)
+ {
+ libertas_mesh_config(priv,0,adapter->curbssparams.channel,NULL);
+ restart_mesh = 1;
+
+ }
+
 ret = update_channel(priv);
 if (ret < 0) {
 lbs_deb_assoc("ASSOC: channel: error getting channel.");
@@ -225,11 +234,13 @@ static int assoc_helper_channel(wlan_private *priv,
 lbs_deb_assoc("ASSOC: channel: %d -> %d\n",
 adapter->curbssparams.channel, assoc_req->channel);

+
 ret = libertas_prepare_and_send_command(priv, CMD_802_11_RF_CHANNEL,
 CMD_OPT_802_11_RF_CHANNEL_SET,

28

Software and Services Group 28

Submitting Patches

• Read the patch before you send it
--- a/drivers/net/wireless/libertas/assoc.c
+++ b/drivers/net/wireless/libertas/assoc.c
@@ -13,6 +13,7 @@

 static const u8 bssid_any[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
 static const u8 bssid_off[ETH_ALEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char
*str);

 static void print_assoc_req(const char * extra, struct assoc_request * assoc_req)
 {
@@ -211,9 +212,17 @@ static int assoc_helper_channel(wlan_private *priv,
 {
 wlan_adapter *adapter = priv->adapter;
 int ret = 0;
+ int restart_mesh = 0;

 lbs_deb_enter(LBS_DEB_ASSOC);

+ if(adapter->mesh_connect_status == LIBERTAS_CONNECTED)
+ {
+ libertas_mesh_config(priv,0,adapter->curbssparams.channel,NULL);
+ restart_mesh = 1;
+
+ }
+
 ret = update_channel(priv);
 if (ret < 0) {
 lbs_deb_assoc("ASSOC: channel: error getting channel.");
@@ -225,11 +234,13 @@ static int assoc_helper_channel(wlan_private *priv,
 lbs_deb_assoc("ASSOC: channel: %d -> %d\n",
 adapter->curbssparams.channel, assoc_req->channel);

+
 ret = libertas_prepare_and_send_command(priv, CMD_802_11_RF_CHANNEL,
 CMD_OPT_802_11_RF_CHANNEL_SET,

29

Software and Services Group 29

Submitting Patches

• Read the patch before you send it

• Use scripts/checkpatch.pl
$ scripts/checkpatch.pl 0002-MESH-START-STOP_IOCTLS.patch
WARNING: line over 80 characters
#7: FILE: drivers/net/wireless/libertas/assoc.c:16:
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char *str);

ERROR: "foo * bar" should be "foo *bar"
#7: FILE: drivers/net/wireless/libertas/assoc.c:16:
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char *str);

ERROR: need space after that ',' (ctx:VxV)
#7: FILE: drivers/net/wireless/libertas/assoc.c:16:
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char *str);
 ^

WARNING: externs should be avoided in .c files
#7: FILE: drivers/net/wireless/libertas/assoc.c:16:
+extern int libertas_mesh_config(wlan_private * priv, int action,int channel,char *str);

ERROR: That open brace { should be on the previous line
#19: FILE: drivers/net/wireless/libertas/assoc.c:219:
+ if(adapter->mesh_connect_status == LIBERTAS_CONNECTED)
+ {
ERROR: need a space before the open parenthesis '('
#19: FILE: drivers/net/wireless/libertas/assoc.c:219:
+ if(adapter->mesh_connect_status == LIBERTAS_CONNECTED)

30

Software and Services Group 30

Submitting Patches

• Read the patch before you send it

• Use scripts/checkpatch.pl

• Send patches to yourself first

$ patch -p1 < saved-email.txt
patching file drivers/net/wireless/libertas/assoc.c
Hunk #1 FAILED at 13.
Hunk #2 FAILED at 212.
Hunk #3 FAILED at 234.
patch: **** malformed patch at line 71: adapter->meshid);

31

Software and Services Group 31

Submitting Patches

• Read the patch before you send it

• Use scripts/checkpatch.pl

• Send patches to yourself first

• Read Documentation/SubmittingPatches

 or Documentation/ja_JP/SubmittingPatches

32

Software and Services Group 32

Submitting Patches

• Read the patch before you send it

• Use scripts/checkpatch.pl

• Send patches to yourself first

• Read Documentation/SubmittingPatches

• Include appropriate description
 commit 4ac9137858e08a19f29feac4e1f4df7c268b0ba5
 Author: Jan Blunck <jblunck@suse.de>
 Date: Thu Feb 14 19:34:32 2008 -0800

 Embed a struct path into struct nameidata instead of nd->{dentry,mnt}

 This is the central patch of a cleanup series. In most cases there is no good
 reason why someone would want to use a dentry for itself. This series reflects
 that fact and embeds a struct path into nameidata.

 Together with the other patches of this series
 - it enforced the correct order of getting/releasing the reference count on
 <dentry,vfsmount> pairs
 - it prepares the VFS for stacking support since it is essential to have a
 struct path in every place where the stack can be traversed

33

Software and Services Group 33

What's next for “Embedded” Linux?

• Solid state storage
– More work on SSDs

– Flash file system development (UBI, logfs, btrfs)

• Better power management

• More real time development

• What do you need?

34

Software and Services Group 34

Questions?

