
Linux on RISC-V
Drew Fustini <dfustini@baylibre.com>

 Slides: tinyurl.com/riscv-kr-22

June 1-3, 2022

https://tinyurl.com/riscv-kr-22
https://kernel-recipes.org/en/2022/

$ whoami

● Linux kernel developer, BayLibre

○ embedded software consultancy based in Nice, France, with ~50 engineers around
the world contributing to open source projects like Linux, U-Boot, Android and Zephyr

● Board of Directors, BeagleBoard.org Foundation

● Board of Directors, Open Source Hardware Association (OSHWA)

○ OSHW Certification Program

● Ambassador, RISC-V International

https://baylibre.com/
https://baylibre.com/blog/
http://beagleboard.org/
https://www.oshwa.org/
https://certification.oshwa.org/
https://riscv.org/ambassadors

RISC-V: a Free and Open ISA
● Started by a computer architecture research group at University of

California Berkeley in 2010 led by Krste Asanovic

● V as in the roman numeral five, because it is the 5th RISC instruction set
to come out of UC Berkeley

● Free and Open because the specifications are published under an
open source license: Creative Commons Attribution 4.0 International

○ Volume 1, Unprivileged Spec v. 20191213 [PDF]

○ Volume 2, Privileged Spec v. 20211203 [PDF]

https://riscv.org/about/history/
https://www.youtube.com/watch?v=Qa2bqZ-7h4U
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

What is different about RISC-V?

● Simple clean-slate design

○ Avoids any dependencies on microarchitecture style (in-order, out-of-order, etc)

● Modular design

○ Suitable for everything from microcontrollers to supercomputers

● Stable base

○ Base integer ISAs and standard extensions are frozen

○ Additions via optional extensions, not new versions

(source: Instruction Sets Want to be Free, Krste Asanovic)

https://www.youtube.com/watch?v=fCzvkP890KM

RISC-V base integer ISAs

● RV32I: 32-bit

○ less than 50 instructions needed!

● RV64I: 64-bit

○ Most important for Linux

● RV128I: 128-bit

○ Future-proof address space

(source: RISC-V Summit 2019: State of the Union, Krste Asanovic)

https://youtu.be/jdkFi9_Hw-c

● XLEN defines the register width

○ XLEN=32 for RV32I

○ XLEN=64 for RV64I

● 32 registers named x0 to x31

● Dedicated PC register

● Base ISA talk by Andrew Waterman explains
the instruction encoding scheme

RISC-V base integer registers

(source: Figure 2.1: RISC-V base unprivileged integer register state)

https://www.youtube.com/watch?v=XWuZSQ6lJlo
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

● x1 to x31 are all equally
general-use registers as far as
the processor is concerned

● RISC-V psABI defines standard
functions for these registers [PDF]

○ s0 to s11 are preserved across
function calls

○ argument registers a0 to a7 and the
temporary registers t0 to t6 are not

RISC-V ABI

(source: RISC-V Assembly Programmer's Manual)

https://github.com/riscv-non-isa/riscv-elf-psabi-doc
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/releases/download/v1.0-rc1/riscv-abi.pdf
https://github.com/riscv-non-isa/riscv-asm-manual/blob/master/riscv-asm.md

RISC-V Standard Extensions

● M: integer multiply/divide

● A: atomic memory operations

● F, D, Q: floating point, double-precision, quad-precision

● G: “general purpose” ISA, equivalent to IMAFD

● C: compressed instructions conserve memory and cache

● Most Linux distributions target RV64GC

(source: RISC-V Summit 2019: State of the Union, Krste Asanovic)

https://youtu.be/jdkFi9_Hw-c

● 15 new specifications representing more than 40 extensions

● Vector

● Hypervisor

● Scalar Cryptography

● Bit Manipulation

Ratified in 2021

https://riscv.org/announcements/2021/12/riscv-ratifies-15-new-specifications/
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20211105-c30284b/riscv-privileged.pdf
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-bitmanip/releases/download/1.0.0/bitmanip-1.0.0-38-g865e7a7.pdf

RISC-V Profiles
● RISC-V is a highly modular and extensible architecture

○ Flexibility to pick and choose what is right for your processor design, but that flexibility
creates a large number of possible combinations

● RISC-V Profiles specify a much smaller set of ISA choices that represent
the most common use-cases

○ RVM for microcontrollers intended to run bare-metal code or an RTOS

○ RVA for application processors designed to run full operating system like Linux

● RISC-V Summit talk by Greg Favor [slides]

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://www.youtube.com/watch?v=Iw15tQlPIEM
https://static.sched.com/hosted_files/riscvsummit2021/04/6.%20Greg%20Favor.pdf

Learn more about RISC-V

● Get up-to-speed quick with the RISC-V Reader

http://riscvbook.com/
http://riscvbook.com/

Learn more about RISC-V

● Textbook: Computer Organization and Design, RISC-V Edition

https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6
https://www.elsevier.com/books/computer-organization-and-design-risc-v-edition/patterson/978-0-12-820331-6

RISC-V and Industry
● RISC-V International now controls the specifications: riscv.org

○ Non-profit with 2,700+ members including companies & universities from 70 countries

○ Become a member - free of cost to individuals and non-profits!

○ RISC-V International YouTube channel has hundreds of talks

● Companies have already shipped billions of RISC-V cores

○ Nvidia GPUs have RISC-V cores for system management tasks

○ Seagate and Western Digital are using RISC-V cores in storage controllers

(source: State of the Union, Krste Asanovic)

https://riscv.org/
https://open-src-soc.org/2022-05/media/slides/RISC-V-International-Day-2022-05-05-11h05-Calista-Redmond.pdf
https://riscv.org/membership/
https://www.youtube.com/channel/UC5gLmcFuvdGbajs4VL-WU3g
https://www.youtube.com/watch?v=Qa2bqZ-7h4U

● No ISA licensing fees or royalties

○ Avoid legal costs and delays caused by complex licensing agreements

● Freedom to choose microarchitecture implementation

○ An open ISA means that everyone has an architecture license

● Freedom to leverage existing open source implementations

○ Broad range of open source cores already available from small embedded cores to
high-performance out-of-order superscalar designs

RISC-V and Industry

“Is RISC-V an Open Source processor?”

● RISC-V is a set of specifications under an open source license

● RISC-V implementations can be open source or proprietary

● Open specifications make open source implementations possible

● An open ISA makes it possible to design an open source processor

RISC-V open source cores
● Academia

○ Rocket and BOOM from Berkeley, PULP family of cores from ETH Zurich

● Industry

○ SweRV created by Western Digital and now developed by CHIPS Alliance

○ OpenHW Group creating proven verified IP like their Core-V designs

○ Google OpenTitan silicon root of trust project uses LowRISC Ibex core

https://github.com/chipsalliance/rocket-chip
https://boom-core.org/
https://pulp-platform.org/
https://www.westerndigital.com/solutions/risc-v
https://chipsalliance.org/blog/2020/07/10/chips-swerv-cores-and-the-open-tools-ecosystem/
https://www.openhwgroup.org/
https://www.youtube.com/watch?v=7LqCnQ4aaWM
https://opentitan.org/
https://lowrisc.org/blog/2020/12/opentitan-at-one-year/
https://lowrisc.org/blog/2019/06/an-update-on-ibex-our-microcontroller-class-cpu-core/

RISC-V open source cores
● FPGA soft-cores

○ PicoRV32, RVfpga, SERV, and VexRiscV

● FOSSi Foundation

○ El Correo Libre monthly newsletter for the latest on open source cores

● Build your own open source SoC with an open source silicon toolchain

○ Google worked with Skywater to open source their 130 nm PDK (process development
kit). Google offers free-of-cost MPW (multi-project wafer) runs to open source
projects. Learn to design your own using open source design tools with Zero to ASIC.

https://github.com/YosysHQ/picorv32
https://blog.imaginationtech.com/how-rvfpga-understanding-computer-architecture-will-give-under-grads-real-world-skills
https://www.youtube.com/watch?v=Nh-9xfK8Q1g
https://github.com/SpinalHDL/VexRiscv
https://www.fossi-foundation.org/2022/04/14/ecl49
https://www.youtube.com/watch?v=l5HcuX8MH6Y
https://opensource.googleblog.com/2022/05/Build%20Open%20Silicon%20with%20Google.html
https://www.zerotoasiccourse.com/

RISC-V software ecosystem
● RISC-V already has a well supported software ecosystem

○ RISC-V International software committee coordinates efforts of member organizations

○ RISC-V extension and feature support

○ PLCT Lab led by Wei Wu at ISCAS does a lot of compiler and runtime work

● Operating systems: Linux, BSDs, FreeRTOS, Zephyr

● Toolchains & libraries: gcc, glibc, gdb, binutils, clang/llvm, newlib

● Languages and Runtimes: V8, Node.js, Rust, Go, OpenJDK, Python

https://riscv.org/exchange/?_sft_exchange_category=software
https://lists.riscv.org/g/software/messages
https://wiki.riscv.org/display/HOME/RISC-V+extension+and+feature+support+in+the+Open+Source+SW+Ecosystem
https://plctlab.github.io/PLCT-Roadmap-2022.en.html

RISC-V Privileged Architecture

● Three privilege modes

○ User (U-mode): application

○ Supervisor (S-mode): OS kernel

○ Machine (M-mode): firmware

● Environment Call (ECALL) instruction

○ Transfer control to a higher privileged mode

○ Userspace program (u-mode) uses ECALL to make system call into OS kernel (s-mode)

https://riscv.org/technical/specifications/

Control and Status Registers (CSRs)

● CSR have their own dedicated instructions to read and write

● CSR are specific to a mode (e.g. m-mode and s-mode)

● Machine Status (mstatus) is an important CSR

(source: Introduction to the RISC-V Architecture [PDF],Drew Barbier)

https://www.youtube.com/watch?v=m8DqCTogb8w
https://sifive.cdn.prismic.io/sifive/25f3cf28-47ae-4cea-9e64-ecd43dea7f11_An+Introduction+to+the+RISC-V+Architecture.pdf

RISC-V Virtual Memory

● satp CSR (Supervisor Address Translation and Protection) controls
supervisor-mode address translation and protection

● Sv32: 3 level page table

● Sv39: 3 level page table

● Sv48: 4 level page table

● Sv57: 5 level page table

(source: Demystifying the RISC-V Linux software stack, Nick Kossifidis)

https://docs.google.com/presentation/d/1pNLRw2eKCrSzEFoXB52gSop2KnkfwdkXdIeriY4lftk/edit?usp=sharing

RISC-V Trap Handling

● Exceptions occur synchronously

● Interrupts occur asynchronously

● <x>cause CSR indicates which interrupt
or exception occurred

○ mcause for m-mode / scause for s-mode

● Corresponding bit is set in <x>E/IP CSR

(source: RISC-V Privileged Architecture [PDF], Allen Baum)

https://www.youtube.com/watch?v=fxLXvrLN5jA
https://riscv.org/wp-content/uploads/2018/05/riscv-privileged-BCN.v7-2.pdf

● Hart is a hardware thread

● Each RISC-V core contains an independent instruction fetch unit

● A RISC-V core with multi-threading (SMT) would contain multiple harts

● Each hart is a processor from the perspective of Linux

○ Imagine a RISC-V laptop which has 2 cores with 2 harts per core

○ Linux would see 4 processors

What is a Hart?

(source: Section 1.1 in RISC-V Unprivileged spec)

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

RISC-V Interrupts

● Local per-hart interrupts

○ CLINT (Core Local Interruptor)

○ CLIC (Core Local Interrupt
Controller)

● Global interrupts

○ PLIC (Platform Level Interrupt
Controller)

(source: RISC-V Fast Interrupts [PDF], Krste Asanovic)

https://sifive.cdn.prismic.io/sifive/d1984d2b-c9b9-4c91-8de0-d68a5e64fa0f_sifive-interrupt-cookbook-v1p2.pdf
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://www.youtube.com/watch?v=QFPQ_kTsbtw
https://riscv.org/wp-content/uploads/2018/05/08.45-09.10-RISCV-20180509-FastInts.pdf

● Developed on the AIA SIG mailing list: tech-aia

● APLIC (Advanced Platform-Level Interrupt Controller) replaces PLIC

● Adds IMSIC (Incoming Message-Signaled Interrupt Controller) for PCIe

● AIA is complimented by ACLINT (Advanced Core Local Interruptor)

○ Developed on the tech-unixplatformspec mailing list

○ Backwards compatible with the SiFive CLINT but restructured to be more efficient

○ RISC-V Summit talk by Anup Patel and John Hauser [slides]

Advanced Interrupt Architecture (AIA)

https://lists.riscv.org/g/tech-aia
https://github.com/riscv/riscv-aclint
https://lists.riscv.org/g/tech-unixplatformspec
https://www.youtube.com/watch?v=je9Qr23mclU
https://static.sched.com/hosted_files/riscvsummit2021/cc/AIA_and_ACLINT_v4.pdf
https://github.com/riscv/riscv-aia

RISC-V Boot Flow

Boot ROM

M-mode
First stage

bootloader
(U-Boot SPL or

vendor firmware)

U-Boot

S-mode

Linux
kernel

RISC-V Boot Flow

Boot ROM

M-mode

U-Boot

S-mode

Linux
kernelSBI

First stage
bootloader
(U-Boot SPL or

vendor firmware)

● Non-ISA RISC-V specification

○ This means it does not add or modify and RISC-V instructions

● The calling convention between S-mode and M-mode

○ Allows supervisor-mode (s-mode) software like the Linux to be portable across RISC-V
implementations by abstracting platform specific functionality

Supervisor Binary Interface (SBI)

https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc

● Required by the UNIX-Class Platform Specification

○ Mailing list: tech-unixplatformspec

○ This will be replaced by the upcoming RISC-V Platform Specification

● Small core along with a set of optional modular extensions

○ Base extension - query basic information about the machine

○ Timer extension - program the clock for the next event

○ IPI extension - send an inter-processor interrupt to harts defined in mask

○ RFENCE extension - instructs remote harts to execute FENCE.I instruction

Supervisor Binary Interface (SBI)

https://github.com/riscv/riscv-platform-specs/blob/master/riscv-unix.adoc
https://lists.riscv.org/g/tech-unixplatformspec
https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc

● Hart State Management (HSM)

○ S-mode can request to stop, start or suspend a hart

● System Reset

○ Supervisor-mode software can request system-level reboot or shutdown

● Performance Monitoring Unit

○ Interface for supervisor-mode to configure and use the RISC-V hardware performance
counters with assistance from the machine-mode

○ ”Performance Monitoring in RISC-V using perf” by Atish Patra

SBI Extensions

https://github.com/riscv-non-isa/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://riscvsummit2021.sched.com/event/nfFw/performance-monitoring-in-risc-v-using-perf-atish-patra-western-digital

● Hypervisor Supervisor mode (HS-mode) where host kernel runs

● Virtualized Supervisor mode (VS-mode) where the guest kernel runs

Hypervisor extension

https://github.com/riscv-non-isa/riscv-sbi-doc/releases/tag/v1.0.0

● Open source implementation of SBI

○ Core library

○ Platform specific libraries

○ Full reference firmware for some platforms

● Provides runtime services to S-mode software

○ SBI extensions present on a platform define the available runtime services

○ Unimplemented instructions will trap and OpenSBI can emulate

OpenSBI

(source: OpenSBI Deep Dive, Anup Patel)

https://github.com/riscv-software-src/opensbi
https://youtu.be/jstwB-o9ll0
https://youtu.be/jstwB-o9ll0

● No need to add code to OpenSBI for each new platform

○ First-stage bootloader, like U-Boot SPL, is expected to pass a Device Tree
to OpenSBI which describes all the platform specific functionality

● The same OpenSBI binary can be used across platforms

○ Many RISC-V boards and emulators now use Generic Platform

○ Linux distros do not need to ship a different OpenSBI build for each board

OpenSBI Generic Platform

https://github.com/riscv-software-src/opensbi/blob/master/docs/platform/generic.md#risc-v-platforms-using-generic-platform
https://github.com/riscv-software-src/opensbi/blob/master/docs/platform/generic.md

OpenSBI Domain Support

● An OpenSBI domain is a system-level partition of underlying hardware
having its own memory regions and HARTs

● Talk by Anup Patel

https://github.com/riscv-software-src/opensbi/blob/master/docs/domain_support.md
https://www.youtube.com/watch?v=lMxSrfn12ec
https://www.youtube.com/watch?v=lMxSrfn12ec

UEFI Support

● UEFI is a standard interface between firmware and operating systems,

and it is used on most x86 and arm64 platforms

● U-Boot and TianoCore EDK2 both have UEFI implementations on RISC-V

● Grub2 can be used as an UEFI payload on RISC-V

● UEFI support for RISC-V added in Linux 5.10

https://patchwork.ozlabs.org/project/uboot/cover/20200314001132.17393-1-atish.patra@wdc.com/
https://github.com/riscv/riscv-uefi-edk2-docs
https://www.phoronix.com/scan.php?page=news_item&px=RISC-V-GRUB-Bootloader-Lands
https://lore.kernel.org/linux-riscv/20200917223716.2300238-1-atish.patra@wdc.com/
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.10-RISC-V-EFI-Boots

● Boot hart ID is known only at boot and it is needed before ACPI tables

or DT properties can be parsed

● Hart ID is passed in the a0 register on non-UEFI systems, but the UEFI

application calling conventions do not allow this

● RISC-V EFI Boot Protocol allows the OS to discover the boot hart ID

● The public review process has completed, and Sunil V L has added
support to the Linux kernel for RISCV_EFI_BOOT_PROTOCOL

UEFI Support

https://github.com/riscv-non-isa/riscv-uefi
https://lists.riscv.org/g/tech-unixplatformspec/message/1694
https://lore.kernel.org/linux-riscv/20220519051512.136724-1-sunilvl@ventanamicro.com/#r

RISC-V Platform Specification
● Goal is to support “off-the-shelf” software by standardizing the

interface between hardware platforms and operating systems

● Created by the Platforms Horizontal Subcommittee (HSC)

○ Bi-weekly meetings chaired by Kumar Sankaran

○ Mailing list: tech-unixplatformspec

● Platforms talk at RISC-V Summit 2021

○ Philipp Tomsich, Chair of Software HSC, and Mark Himelstein CTO RISC-V International

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://github.com/riscv/riscv-platform-specs/wiki
https://www.youtube.com/watch?v=WiftQGgeTVQ
https://lists.riscv.org/g/tech-unixplatformspec
https://www.youtube.com/watch?v=l2w4cWFpqAA

RISC-V Platform Specification
● OS-A Platform

○ “A” as in application, this is a category of platforms that support full OS like Linux

○ OS-A Common Requirements

○ OS-A Embedded Platform

○ OS-A Server Platform

● RVM-CSI Platform

○ Bare-metal applications or RTOS running on RISC-V microcontrollers

○ CSI is common software interface; goal is to ease porting, not binary compatibility

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc

RISC-V Platform Specification
● OS-A common requirements for Embedded and Server

○ Must comply with the RVA22U and RVA22S ISA profiles as defined in RISC-V ISA Profiles

○ Common requirements for Debug, Timers, Interrupt Controllers

○ Requires serial console with UART 8250 or UART 16550

○ Requirements for runtime services such as SBI extensions

○ Software components must comply with the RISC-V Calling Convention specification
and the RISC-V ELF specification

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://github.com/riscv/riscv-profiles/blob/master/profiles.adoc
https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#spec_proc_call
https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#spec_elf

RISC-V Platform Specification
● OS-A Embedded Platform

○ Target might be a single board computer or mobile device

○ PMU counters and events for performance monitoring

○ Boot process must comply with Embedded Base Boot Requirements (EBBR) spec

○ EBBR requires a subset of the UEFI spec which U-Boot has implemented

○ Device Tree (DT) is the required mechanism for the hardware discovery and config

○ GPT partitioning required for shared storage

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://arm-software.github.io/ebbr/

RISC-V Platform Specification
● OS-A Server Platform

○ Goal is for an enterprise Linux distro like RHEL to “just work” on server-class hardware
that complies with this

○ System peripheral requirements like PCIe, watchdog timer, system date/time

○ RAS (Reliability, Availability, and Serviceability) requirements like ECC RAM

○ ACPI is the required mechanism for the hardware discovery and configuration

○ Must comply with the RISC-V ACPI Platform Requirements Specification

https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc
https://github.com/riscv/riscv-platform-specs/blob/main/riscv-platform-spec.adoc#spec_riscv_acpi

RISC-V ACPI Platform Specification
● Defines mandatory ACPI tables and objects for RISC-V server platforms

● New tables are needed for RISC-V

○ RISC-V Hart Capabilities Table (RHCT)

○ RISC-V Timer Description Table (RTDT)

● More details in ‘ACPI for RISC-V: Enabling Server Class Platforms’

○ Sunil V L from Ventana Microsystems at RISC-V Summit [slides]

https://github.com/riscv-non-isa/riscv-acpi
https://www.youtube.com/watch?v=3WS6vCAC0Vs
https://static.sched.com/hosted_files/riscvsummit2021/e3/RISCVSummit_2021_ACPI_Sunil_final.pdf

● Support for RISC-V in mainline QEMU

● Boots 32-bit and 64-bit mainline Linux kernel

● Machine configs to boot same binaries as some RISC-V dev boards

● Supports the new Hypervisor and Vector extensions

RISC-V emulation in QEMU

https://wiki.qemu.org/Documentation/Platforms/RISCV
https://wiki.qemu.org/Documentation/Platforms/RISCV

RISC-V in the Linux kernel

● Initial port by Palmer Dabbelt was merged into Linux 4.15 back in 2018

● “It’s a fun, friendly, and still pretty small community” - Björn Töpel [1]

● Palmer continues to maintain the riscv tree

● Development happens on the linux-riscv mailing list

● View the archive on lore.kernel.org

● IRC: #riscv on libera.chat

https://docs.google.com/presentation/d/1vfrVlWKYWHSw6Q5PDQBn6PC5jwXet4HPxN3f_nxtFm4/edit?usp=sharing
https://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux.git
http://lists.infradead.org/mailman/listinfo/linux-riscv
https://lore.kernel.org/linux-riscv/

Recently added to Linux

● KVM RISC-V support by Anup Patel added in Linux 5.16

○ Add KVM support for the Hypervisor specification

● SBI SRST extension support by Anup Patel added in Linux 5.17

○ Support for the SBI SRST (system reset) extension which allows systems that do not have

an explicit driver in Linux to reboot

https://lore.kernel.org/linux-riscv/20210927114016.1089328-1-anup.patel@wdc.com/
https://lore.kernel.org/linux-riscv/CAAhSdy37xNOs3udMe4GuLJ3=huKD1bsHEO_RfUPvuMiVw56GCQ@mail.gmail.com/
https://lore.kernel.org/linux-riscv/20210609121322.3058-1-anup.patel@wdc.com/
https://lore.kernel.org/linux-riscv/mhng-d9275aee-84cd-428e-8732-adfa59900a9d@palmer-ri-x1c9/

New in Linux 5.18

● Add Sv57 page table support by Qinglin Pan

○ use 5-level page table to support Sv57 which expands the virtual address space to

57 bits (128 petabytes)

● Improve RISC-V Perf support by Atish Patra

○ Recent talk: Perf on RISC-V: The Past, the Present and the Future (slides)

https://kernelnewbies.org/Linux_5.18#RISCV
https://lore.kernel.org/linux-riscv/20220127024844.2413385-1-panqinglin2020@iscas.ac.cn/#r
https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://lore.kernel.org/linux-riscv/20220219004700.1973682-1-atishp@rivosinc.com/
https://www.youtube.com/watch?v=u9vMle75k94
https://static.sched.com/hosted_files/osselc21/34/Perf_RISCV_atish.pdf

New in Linux 5.18

● RISC-V CPU Idle support by Anup Patel

○ cpuidle and suspend drivers now support the SBI HSM extension

● Provide framework for RISC-V ISA extensions by Atish Patra

○ Linux was no longer correctly parsing the RISC-V ISA string as the number of RISC-V
extensions has grown and extension names are no longer a single character

○ This series implements a generic framework to parse multi-letter ISA extensions.

○ Based on initial work by Tsukasa OI

https://kernelnewbies.org/Linux_5.18#RISCV
https://lore.kernel.org/linux-riscv/20220210054947.170134-1-apatel@ventanamicro.com/
https://lore.kernel.org/linux-riscv/20220314203845.832648-1-atishp@rivosinc.com/
https://lore.kernel.org/all/0f568515-a05e-8204-aae3-035975af3ee8@irq.a4lg.com/T/

Coming in Linux 5.19…

● RISC-V Patches for the 5.19 Merge Window, Part 1 - Palmer (2022-05-31)

○ Support for page-based memory attributes <we’ll dive into that topic in a few slides>

○ Support for running rv32 binaries on rv64 systems via the compat subsystem

○ Support for kexec_file()

○ Support new generic ticket-based spinlocks, which allows us to also move to qrwlock

○ A handful of cleanups and fixes, include some larger ones around atomics and XIP

● Part 2? Follow linux-riscv and look at Palmer’s riscv/for-next branch

https://lore.kernel.org/linux-riscv/mhng-3cfe92b5-a83a-4642-9b9e-8416ae717fd6@palmer-ri-x1c9/
https://lore.kernel.org/linux-riscv/
https://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux.git/log/?h=for-next

Work in progress

● [PATCH v10 00/16] riscv: Add vector ISA support by Greentime Hu

○ Vector ISA support based on the ratified Vector 1.0 extension

○ Defines new structure __riscv_v_state in struct thread_struct to save/restore the
vector related registers. It is used for both kernel space and user space.

● [PATCH v6 0/7] RISC-V IPI Improvements by Anup Patel

○ Traditionally, RISC-V S-mode software like the Linux kernel calls to into M-mode runtime
firmware like OpenSBI to issue IPIs (inter-processor interrupts)

○ AIA (advanced interrupt architecture) provides the ability for S-mode to issue IPIs
without any assistance from M-mode. This improves efficiency.

https://lore.kernel.org/linux-riscv/cover.1652257230.git.greentime.hu@sifive.com/
https://lore.kernel.org/linux-riscv/20220418105305.1196665-1-apatel@ventanamicro.com/

Work in progress

● [PATCH v4 0/4] Add Sstc extension support by Atish Patra

○ Traditionally, an SBI call is necessary to generate timer interrupts as S-mode does not
have access to the M-mode time compare registers.

○ This results in significant latency for the kernel to generate timer interrupts at kernel

○ For virtualized environments, it’s even worse as the KVM handles the SBI call and uses a
software timer to emulate the time compare register.

○ Sstc extension allows kernel to program a timer and receive interrupt without
supervisor execution environment (M-mode/HS mode) intervention.

https://lore.kernel.org/linux-riscv/20220527042937.1124009-1-atishp@rivosinc.com/#r

Linux distro: Fedora
● Aims to provide a complete Fedora experience on RISC-V

● Talk by Wei Fu, RISC-V Ambassador and Red Hat engineer [slides]

● Installation instructions for QEMU and RISC-V dev boards

https://fedoraproject.org/wiki/Architectures/RISC-V
https://www.youtube.com/watch?v=vhHKh8Bl64w
https://riscv.or.jp/wp-content/uploads/Linux_distros_on_RISC-V_Day_Tokyo_2021_draft_c.pdf
https://fedoraproject.org/wiki/Architectures/RISC-V/Installing
https://fedoraproject.org/wiki/Architectures/RISC-V
https://riscv.or.jp/wp-content/uploads/Linux_distros_on_RISC-V_Day_Tokyo_2021_draft_c.pdf

Linux distro: Debian
● riscv64 is port of Debian to RISC-V

○ “a port in Debian terminology means to
provide the software normally available in
the Debian archive (over 20,000 source
packages) ready to install and run”

● 95% of packages are built for RISC-V

○ The Debian port uses RV64GC as the
hardware baseline and the lp64d ABI

https://wiki.debian.org/RISC-V
https://wiki.debian.org/RISC-V
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

Linux distro: Ubuntu
● riscv64 supported since the release of Ubuntu 20.04 LTS.

● Ubuntu 22.04 pre-installed SD-card image for SiFive boards and QEMU

● Starting with Ubuntu 22.04, a server install image is made available to
install Ubuntu on NVMe drive of the SiFive Unmatched board

https://wiki.ubuntu.com/RISC-V
https://discourse.ubuntu.com/t/ubuntu-installation-on-the-sifive-hifive-unmatched-board-using-a-server-install-image/27804

Linux distros
● OpenSuSE

○ RISC-V support is still under development with Tumbleweed images for some boards

● Arch Linux

○ Community effort has 95% of core packages building for RISC-V

● Gentoo

○ riscv64 stages are available on the Gentoo download page

https://en.opensuse.org/openSUSE:RISC-V
https://archriscv.felixc.at/
https://wiki.gentoo.org/wiki/Project:RISC-V

OpenEmbedded and Yocto
● meta-riscv: general hardware-specific BSP overlay for RISC-V devices

○ works with different OpenEmbedded/Yocto distributions and layer stacks

○ Supports both QEMU and RISC-V dev boards

https://github.com/riscv/meta-riscv
https://github.com/riscv/meta-riscv/blob/master/conf/machine/baremetal-riscv64.conf
https://github.com/riscv/meta-riscv/tree/master/conf/machine

BuildRoot
● RISC-V port is now supported in the upstream BuildRoot project

● “Embedded Linux from scratch in 45 minutes (on RISC-V)”

○ Tutorial by Michael Opdenacker at FOSDEM 2021

○ Use Buildroot to compile OpenSBI, U-Boot, Linux and BusyBox

○ Boot the system in QEMU

https://www.youtube.com/watch?v=W8fl82SGNL0
https://buildroot.org/
https://fosdem.org/2021/schedule/event/linux_from_scratch_on_risc_v/attachments/slides/4355/export/events/attachments/linux_from_scratch_on_risc_v/slides/4355/opdenacker_embedded_linux_45minutes_riscv.pdf

● Launched in 2018 as first Linux-capable RISC-V dev board

● Exciting to see Fedora GNOME desktop on RISC-V

● $999 was too expensive for widespread adoption

● FU540 SoC chip was never sold separately

SiFive Freedom Unleashed

https://www.sifive.com/boards/hifive-unleashed
https://www.sifive.com/boards/hifive-unleashed
https://www.youtube.com/watch?v=WC6e3g8uWdk

Microchip PolarFire SoC
● Same RISC-V cores as the SiFive FU540 SoC

but adds a FPGA fabric

○ FPGA with 25k to 460k logic elements (LEs)

○ Supports DDR4 and PCIe Gen2

● Full commercial product family

○ Parts will be available from distributors

● Microchip Icicle dev board ($499)

https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.mouser.com/ProductDetail/Microchip-Technology/MPFS250T-1FCVG784EES?qs=W%2FMpXkg%252BdQ4qZGTTdkn1DA%3D%3D
https://www.microsemi.com/existing-parts/parts/152514
https://www.crowdsupply.com/microchip/polarfire-soc-icicle-kit
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/existing-parts/parts/152514

Kendryte K210
● 400 MHz dual core RV64GC

● 8MB SRAM but no DRAM

● Dev boards starting at $14

● Upstream support in Linux and u-boot

● Buildroot support by Damien Le Moal can
create a busybox-based rootfs

https://canaan.io/product/kendryteai
https://www.seeedstudio.com/Sipeed-MAix-BiT-for-RISC-V-AI-IoT-p-2872.html
https://www.phoronix.com/scan.php?page=news_item&px=RISC-V-Changes-Linux-5.8
https://u-boot.readthedocs.io/en/stable/board/sipeed/maix.html
https://github.com/damien-lemoal/buildroot/tree/k210-v17

SiFive Unmatched
● SiFive Freedom FU740 SoC

○ 4x U74 RV64GC application cores

● Mini-ITX PC form factor

○ 16GB DDR4, 4x USB 3.2, one x16 PCIe slot

○ M.2 for NVMe SSD and WiFi/Bluetooth

● Shipped in 2021 for $665

○ Discontinued in 2022 to focus on next-gen

https://www.sifive.com/boards/hifive-unmatched
https://www.crowdsupply.com/sifive/hifive-unmatched
https://forums.sifive.com/t/sifive-update-on-hifive-unmatched-boards-in-2022/5569?s=09

T-Head XuanTie C910
● T-Head (“píng tóu gē”) is part of Alibaba

● High performance RV64GC with up 16 cores

○ 12-stage pipeline, out-of-order, multi-issue architecture

○ comparable to Arm Cortex-A73

● 2 core ‘ICE’ SoC made in low qty for evaluation

● T-Head ported Android 10 (AOSP) to RISC-V and
showed a demo on the ICE in early 2021

https://www.t-head.cn/product/c910?lang=en
https://www.cnx-software.com/2019/07/27/alibaba-unveils-xuantie-910-16-core-risc-v-processor/
https://www.labbrand.com/brandsource/worlds-largest-zoo-created-by-a-chinese-company-how-alibaba-uses-symbolic-naming-to-boost-the-brand
https://github.com/T-head-Semi/aosp-riscv
https://www.t-head.cn/product/c910?lang=en
https://github.com/T-head-Semi/aosp-riscv

Porting Android to RISC-V
● Mao Han presented why and how Alibaba

T-Head ported Android to RISC-V (jump to 4:32)

○ PDF of slides

● Update on Android 12 from April (jump to 13:23)

○ PDF of slides

● How Alibaba is Porting RISC-V to the Android OS
blog post with more technical details

https://chipsalliance.org/wp-content/uploads/sites/83/2021/10/porting-android-chips_alliance-slides-v1.2-Han-Mao.pdf
https://www.youtube.com/watch?v=auXZdPwYs10&t=269s
https://chipsalliance.org/wp-content/uploads/sites/83/2021/10/porting-android-chips_alliance-slides-v1.2-Han-Mao.pdf
https://youtu.be/L4saSRKnMF8?t=803
https://lists.riscv.org/g/software/message/201
https://riscv.org/blog/2021/11/how-alibaba-is-porting-risc-v-to-the-android-os-guoyin-chen-alibaba/
https://youtu.be/L4saSRKnMF8?t=803
https://youtu.be/L4saSRKnMF8?t=803
https://www.youtube.com/watch?v=auXZdPwYs10&t=269s

● ‘ICE’ SoC featuring dual C910 core at 1.2GHz

● 4GB LPDDR4, 16GB eMMC, 7 inch touchscreen, WiFi, Gigabit Ethernet

● Produced in limited quantity and available on AliExpress for $399

T-Head RVB-ICE dev board

https://www.aliexpress.com/item/1005003395978459.html
https://www.aliexpress.com/item/1005003395978459.html
https://github.com/T-head-Semi/riscv-aosp#board
https://www.aliexpress.com/item/1005003395978459.html

RISC-V Android SIG (Special Interest Group)
● GitHub organization riscv-android-src “contains all the modified

AOSP(Android open source project) repositories with RISC-V support”

● Instruction to build and run Android 12 on RISC-V

https://lists.riscv.org/g/sig-android
https://github.com/riscv-android-src
https://github.com/riscv-android-src/riscv-android/blob/main/doc/android12.md
https://lists.riscv.org/g/software/message/201

T-Head XuanTie C906
● single-core RV64GC, only up to 1GHz, simpler 5-stage in-order pipeline

https://www.t-head.cn/product/c906?lang=en
https://www.t-head.cn/product/c906?lang=en

Allwinner D1 SoC
● mass production low cost SoC with a single T-Head C906 core at 1 GHz

https://d1.docs.allwinnertech.com/
https://d1.docs.allwinnertech.com/

Allwinner Nezha D1 dev board
● Official D1 board made by Allwinner Online, $115 bundle on AliExpress

https://d1.docs.allwinnertech.com/d1_dev_en/
https://www.aliexpress.com/item/1005002668194142.html?spm=a2g0o.productlist.0.0.1511ed03lwxSQk&algo_pvid=e5a6af6e-01e0-4e33-bac0-6ef1a45f47e7&algo_exp_id=e5a6af6e-01e0-4e33-bac0-6ef1a45f47e7-1&pdp_ext_f=%7B%22sku_id%22%3A%2212000021634595097%22%7D

RISC-V Developer Boards
● Initiative from RISC-V International to get Linux-capable boards into the

hands of open source developers

○ Launched in 2021 with the Allwinner D1 Nezha and SiFive Unmatched

● Fill out this form to apply

○ Need to be RISC-V International member (or part of a member organization),
but remember that individuals can join RISC-V International free of cost

○ Explain why you are interested in RISC-V and what you plan to do with dev board

○ To improve your chances, don’t overestimate your hardware requirements like RAM

https://riscv.org/risc-v-developer-boards/
https://docs.google.com/forms/d/1GDg3yY_PAOH1qtM4K5fxQj1yiwNgOnjPsajxqUaK934/edit
https://riscv.org/membership/

Allwinner D1 open source community
● linux-sunxi: strong open source community for Allwinner SoCs

○ D1 wiki page and Allwinner Nezha board wiki page

● Telegram group: Mainline Linux for D1 (190 members)

● Samuel Holland has been working on getting mainline to run

○ U-Boot SPL: https://github.com/smaeul/sun20i_d1_spl

○ OpenSBI: https://github.com/smaeul/opensbi

○ U-Boot: https://github.com/smaeul/u-boot/tree/d1-wip

○ Linux: https://github.com/smaeul/linux/tree/riscv/d1-wip

https://linux-sunxi.org/
https://linux-sunxi.org/D1
https://linux-sunxi.org/Allwinner_Nezha
https://t.me/joinchat/551j3yJa09owZTA1
https://www.sholland.org/
https://github.com/smaeul/sun20i_d1_spl
https://github.com/smaeul/opensbi/tree/d1-wip
https://github.com/smaeul/u-boot/tree/d1-wip
https://github.com/smaeul/linux/tree/riscv/d1-wip

Fedora on Allwinner D1
● Wei Fu has created a Fedora “Rawhide” image for the Allwinner D1

Nezha dev board that includes the XFCE desktop environment

https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner
https://riscv.org/blog/2020/06/qa-with-risc-v-ambassador-wei-fu-on-the-growth-and-future-of-risc-v/
https://fedoraproject.org/wiki/Architectures/RISC-V/Allwinner

● Allwinner D1 with DDR3 RAM of either
512MB ($22) or 1GB ($32)

● 1.14” SPI LCD, USB Type-C OTG, uSD

● Lichee RV Dock: HDMI out, USB-A host
port, WiFi+BT, mic, audio out

● Lichee RV 86 Panel: 8 inch screen

● More details on sunxi wiki

Lichee RV-Nezha CM

https://www.seeedstudio.com/lichee-RV-Nezha-CM-Allwinner-D1-SoC-1-14-Inch-SPI-LCD-p-5254.html
https://www.aliexpress.com/item/1005003594875290.html
https://www.seeedstudio.com/Lichee-RV-Dock-Allwinner-D1-SoC-RISC-V-Linux-dev-kit-High-Integration-Open-Source-p-5380.html
https://www.seeedstudio.com/Lichee-RV-86-Panel-Allwinner-D1-SOC-RISC-V-IPS-LCD-smart-home-central-control-Linux-WAFT-p-5379.html
https://linux-sunxi.org/Sipeed_Lichee_RV
https://wiki.sipeed.com/hardware/zh/lichee/RV/RV.html
https://wiki.sipeed.com/hardware/zh/lichee/RV/RV.html
https://wiki.sipeed.com/hardware/zh/lichee/RV/RV.html
https://wiki.sipeed.com/hardware/zh/lichee/RV/Dock.html
https://wiki.sipeed.com/hardware/zh/lichee/RV/86_panel.html

Xassette Asterisk
● Allwinner F133 combines the Allwinner D1

with 64MB DDR2 in a single package

● Board design published as Open Source
Hardware under the CERN OHL-w v2 licence

● Designed with KiCad (open source CAD sw)

● Not available commercially but possible to
be hand assembled by hobbyists

https://github.com/SdtElectronics/Xassette-Asterisk
https://www.oshwa.org/definition/
https://www.oshwa.org/definition/
https://ohwr.org/project/cernohl/wikis/Documents/CERN-OHL-version-2
https://blog.oshpark.com/2019/10/16/getting-to-blinky-with-kicad-5/

MangoPi-Nezha MQ
● Allwinner F133 (also known as D1s)

● WiFi, USB Type C, mic, audio out

● DSI and RGB display connectors

● Open source hardware: KiCad files on GitHub

● $39 on Crowd Supply

https://www.crowdsupply.com/rt-thread/mangopi-nezha-mq
https://github.com/mangopi-sbc/MQ

Allwinner D1 mainline Linux support
● Allwinner reused peripheral IP from their existing ARM SoCs and the

Linux kernel already has drivers for most of them

● T-Head cores like C910 and C906 do have some non-standard
functionality for performance but it’s not needed to boot

○ Instructions to accelerate I-cache and TLB synchronization

● T-Head MMU has a non-standard ‘enhanced’ mode that is needed to
support DMA with devices on non-coherent interconnects

○ Linux needs to enable that ‘enhanced’ MMU mode to function properly

How to handle non-coherent interconnects?
● The original RISC-V Privileged spec stated that “the use of

hardware-incoherent regions is discouraged due to software
complexity, performance, and energy impacts”

● However, non-coherent interconnects are important for low cost SoCs

● T-Head designed the C9xx cores in 2019, and there were no RISC-V
extensions that provided ability to handle non-coherent devices

https://lkml.org/lkml/2019/4/22/308

T-Head PTE format
● T-Head used bits in the PTE (Page Table Entry) to specify memory type

 … but those bits were already marked reserved in RISC-V priv spec

| 63 | 62 | 61 | 60 | 59-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
 SO C B SH RSW D A G U X W R V
 ^ ^ ^ ^

BIT(63): SO - Strong Order
BIT(62): C - Cacheable
BIT(61): B - Bufferable
BIT(60): SH - Shareable

0000 - NC Weakly-ordered, Non-cacheable, Non-bufferable, Non-shareable
0111 - PMA Weakly-ordered, Cacheable, Bufferable, Shareable
1000 - IO Strongly-ordered, Non-cacheable, Non-bufferable, Non-shareable

Page-Based Memory Types extension
● Svpbmt proposed by Virtual Memory TG and ratified at the end of 2021

○ “S” = supervisor-mode (privileged architecture), “v” for virtual memory

Here is the svpbmt PTE format:
| 63 | 62-61 | 60-8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0
 N MT RSW D A G U X W R V
 ^
RISC-V
Encoding &
MemType RISC-V Description
---------- --
00 - PMA Normal Cacheable, No change to implied PMA memory type
01 - NC Non-cacheable, idempotent, weakly-ordered Main Memory
10 - IO Non-cacheable, non-idempotent, strongly-ordered I/O memory
11 - Rsvd Reserved for future standard use

https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12
https://github.com/riscv/virtual-memory

Svpbmt support in Linux
● [PATCH v10 00/12] riscv: support for Svpbmt and D1 memory types

○ by Heiko Stuebner based on initial work by Alibaba kernel engineer Guo Ren

○ Implements the official RISC-V Svpbmt extension

○ The standard Svpbmt and custom T-Head PTE formats both use the highest bits to
determine memory type but the encoding and semantics are different

○ The custom T-Head PTE format is supported through boot-time code patching using
the Linux Alternatives Framework

○ Expected to land in Linux 5.19 as it is in Palmer’s pull request

https://lore.kernel.org/linux-riscv/20220511192921.2223629-1-heiko@sntech.de/
https://blogs.oracle.com/linux/post/exploring-arm64-runtime-patching-alternatives
https://lore.kernel.org/linux-riscv/mhng-3cfe92b5-a83a-4642-9b9e-8416ae717fd6@palmer-ri-x1c9/

Cache Management Operations
● Instructions to manage cache are important for SoCs which that lack

cache coherent interconnects

● Zicbom extension (“Z” prefix means Unpriv spec) was ratified at the
end of 2021, and it defines cache-block management (CBO)
instructions:

○ CBO.CLEAN guarantee store by hart can be read from mem by non-coherent device

○ CBO.INVAL guarantee hart can load data written to memory by non-coherent device

○ CBO.FLUSH guarantees both

● Support for Non-Coherent I/O Devices in RISC-V from RV Summit [slides]

https://github.com/riscv/riscv-CMOs
https://github.com/riscv/riscv-CMOs/blob/master/specifications/cmobase-v1.0.pdf
https://www.youtube.com/watch?v=ZviRvykf8mE
https://riscvsummit2021.sched.com/event/nfG5/support-for-non-coherent-io-devices-in-risc-v-greg-favor-david-kruckemyer-ventana-micro-systems

CMO support in Linux
● riscv: implement Zicbom-based CMO instructions + the t-head variant

by Heiko Stuebner

● Implements Zicbom-extension to handle cache clean, invalidate, flush

* cbo.clean rs1
* | 31 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0...01 rs1 010 00000 0001111
*
* cbo.flush rs1
* | 31 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0...10 rs1 010 00000 0001111
*
* cbo.inval rs1
* | 31 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0...00 rs1 010 00000 0001111

#define CBO_INVAL_A0 ".long 0x15200F"
#define CBO_CLEAN_A0 ".long 0x25200F"
#define CBO_FLUSH_A0 ".long 0x05200F"

https://lore.kernel.org/linux-riscv/20220511214132.2281431-1-heiko@sntech.de/

CMO support in Linux
● T-Head implemented custom cache instructions before Zicbom existed

* dcache.ipa rs1 (invalidate, physical address)
* | 31 - 25 | 24 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0000001 01010 rs1 000 00000 0001011
* dache.iva rs1 (invalida, virtual address)
* 0000001 00110 rs1 000 00000 0001011
*
* dcache.cpa rs1 (clean, physical address)
* | 31 - 25 | 24 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0000001 01001 rs1 000 00000 0001011
* dcache.cva rs1 (clean, virtual address)
* 0000001 00100 rs1 000 00000 0001011
*
* dcache.cipa rs1 (clean then invalidate, physical address)
* | 31 - 25 | 24 - 20 | 19 - 15 | 14 - 12 | 11 - 7 | 6 - 0 |
* 0000001 01011 rs1 000 00000 0001011
* dcache.civa rs1 (... virtual address)
* 0000001 00111 rs1 000 00000 0001011

#define THEAD_INVAL_A0 ".long 0x0265000b"
#define THEAD_CLEAN_A0 ".long 0x0245000b"
#define THEAD_FLUSH_A0 ".long 0x0275000b"

CMO support in Linux
● While the Zicbom and T-Head instructions are different, they provide

the same functionality, so the T-Head variant handled with the existing
alternatives mechanism

● Allwinner D1 needs these cache instructions for peripherals like
MMC (SD card), USB, and Ethernet to work

● Unfortunately, these patches use pre-coded CMO instructions and
Palmer would prefer that Linux support wait until the instructions are
added to gcc and binutils

https://lore.kernel.org/linux-riscv/mhng-121147bc-4923-4f2e-b76e-c504329ad567@palmer-ri-x1c9/

Allwinner D1 IOMMU support
● [PATCH 0/5] iommu/sun50i: Allwinner D1 support by Samuel Holland

● IOMMU is not needed for boot

● Optional feature for the display engine and video decoder

● Without IOMMU support, video/frame buffers have to be contiguous in
physical memory, and that requires the user to know how much
memory to reserve for them at boot

https://lore.kernel.org/linux-riscv/20220428010401.11323-1-samuel@sholland.org/#r

T-Head released RISC-V cores as open source!
● OpenE902, OpenE906, OpenC906, and OpenC910 cores on GitHub

under permissive Apache 2.0 licence

https://abopen.com/news/alibabas-t-head-releases-c906-c910-risc-v-cores-under-a-permissive-licence/
https://github.com/T-head-Semi/opene902
https://github.com/T-head-Semi/opene906
https://github.com/T-head-Semi/openc906
https://github.com/T-head-Semi/openc910
https://github.com/T-head-Semi/
https://github.com/T-head-Semi/openc910

XiangShan (香山)
● open source high-performance RISC-V processor project from the

Chinese Academy of Science

● RISC-V Summit 2021 talk by Professor Yungang Bao (slides)

○ “Contribute to XiangShan and realize your ideas on real chips! The open-source
XiangShan will be taped-out every ~6 months”

● Nanhu is the 2nd generation microarchitecture

○ Target: 2GHz@14nm, SPEC CPU2006 20 marks; 7.81 CoreMark/MHz

https://github.com/OpenXiangShan/XiangShan
https://www.youtube.com/watch?v=LSiBKxoszz4
https://static.sched.com/hosted_files/riscvsummit2021/8c/XiangShan-Yungang-Bao-20211206.pdf
https://github.com/OpenXiangShan/XiangShan

RISC-V Lab
● PLCT Lab at Chinese Academy of Sciences

○ Status report from lab director Wei Wu

● Continuous Integration (CI) for open source
software projects on RISC-V hardware

○ 70+ SiFive Unmatched boards

○ 100+ Allwinner Nezha D1 boards

○ Open source devs can request access

https://plctlab.github.io/
https://docs.google.com/presentation/d/1RVRcNopD9KVrZ3B1Pl-Mn6QYr_rL3lUU04gCIjlXxHY/edit#slide=id.gf7f37fda18_0_10
https://lists.riscv.org/g/software/message/175
https://github.com/plctlab/riscv-lab-access

No hardware? Try Renode!
● Emulate physical hardware systems including

CPU, peripherals, sensors, and networking

● Run the same binaries as the real hardware
for over 30 supported dev boards

○ Microchip PolarFire SoC Icicle Kit

○ Kendryte K210

○ SiFive HiFive Unleashed

http://renode.io/
https://renode.readthedocs.io/en/latest/introduction/supported-boards.html
https://github.com/renode/renode/blob/master/scripts/single-node/icicle-kit.resc
https://github.com/renode/renode/blob/master/scripts/single-node/kendryte_k210.resc
https://github.com/renode/renode/blob/master/scripts/single-node/hifive_unleashed.resc
https://renode.readthedocs.io/en/latest/introduction/supported-boards.html

How to get involved with RISC-V International?
● Become a member

○ Individuals and non-profits can join free of cost

● RISC-V Technical wiki landing page is the single best place to visit

○ Technical Working Groups

○ Recently Ratified Extensions

https://riscv.org/membership/
https://wiki.riscv.org/display/TECH/Technical+Overview
https://wiki.riscv.org/display/HOME/Technical+Working+Groups
https://wiki.riscv.org/display/HOME/Recently+Ratified+Extensions

How to get involved with RISC-V International?
● RISC-V mailing list server

○ Only RISC-V members can participate

○ Archives of all the lists are public

● Technical Meetings Calendar

○ Many groups have bi-weekly or monthly meetings

○ ICS File / Google Calendar

https://lists.riscv.org/g/main
https://riscv.org/membership/
https://lists.riscv.org/g/main/subgroups
https://calendar.google.com/calendar/embed?src=tech.meetings%40riscv.org
https://calendar.google.com/calendar/ical/tech.meetings%40riscv.org/public/basic.ics
https://calendar.google.com/calendar/u/0?cid=dGVjaC5tZWV0aW5nc0ByaXNjdi5vcmc

● YouTube playlist with 93 talks

RISC-V Summit 2021

https://www.youtube.com/playlist?list=PL85jopFZCnbPGAhsdS16Nn4CdX6o1LeZe
https://www.youtube.com/playlist?list=PL85jopFZCnbPGAhsdS16Nn4CdX6o1LeZe

RISC-V Spring Week 2022
● Videos on the RISC-V YouTube channel

● State of the Union & the Road Ahead

● Maturing the RISC-V Ecosystem

● Evolving the Role of Software in the RISC-V
Ecosystem

● RISC-V IOMMU Architecture Overview

https://open-src-soc.org/2022-05/program-riscv-meeting.html
https://www.youtube.com/c/RISCVInternational/videos
https://www.youtube.com/watch?v=02n5Mdfix0k
https://www.youtube.com/watch?v=LY98foD0SkY
https://www.youtube.com/watch?v=DGxWFvptU3I
https://www.youtube.com/watch?v=DGxWFvptU3I
https://www.youtube.com/watch?v=8fIQqXwGST8
https://www.youtube.com/watch?v=02n5Mdfix0k

Embedded Linux Conf 2021
● Initializing RISC-V A Guided Tour for ARM Developers

○ Ahmad Fatoum & Rouven Czerwinski, Pengutronix

● Building a Low-key XIP-enabled RISC-V Linux System

○ Vitaly Vul, Konsulko AB

● Perf on RISC-V: The Past, the Present and the Future

○ Atish Patra & Anup Patel, Western Digital

● "A New user(space): Adding RISC-V Support to Zephyr RTOS" [slides]

○ Kevin Hilman & Alexandre Mergnat, BayLibre

https://www.youtube.com/watch?v=70oYYuflFLs&list=PLbzoR-pLrL6q8QMGJ4dFnqejkHDm76kJV&index=133
https://www.youtube.com/watch?v=0hzuRpnmCpM&list=PLbzoR-pLrL6q8QMGJ4dFnqejkHDm76kJV&index=35
https://www.youtube.com/watch?v=u9vMle75k94&list=PLbzoR-pLrL6q8QMGJ4dFnqejkHDm76kJV&index=195
https://youtu.be/AtguxEq-M0U
https://static.sched.com/hosted_files/osselc21/62/ELC%202021%20RISC-V%20PMP.pdf

Find more at: community.riscv.org

RISC-V meetups around the world

https://community.riscv.org/

RISC-V Open Hours

● Bi-weekly virtual meetup for the community to interact in real-time

○ Primary focus on RISC-V support in open source software and RISC-V dev boards

○ Call for participation is open! No prepared talk or slides required!

● Schedule

○ Wednesday, June 8, 7:00 PM (US PDT) which is Thursday morning in Asia

○ Wednesday, June 29, 9:00 AM (US PDT) which is early evening in Europe

https://community.riscv.org/risc-v-open-hours/
https://community.riscv.org/events/details/risc-v-international-risc-v-open-hours-presents-risc-v-open-hours-15/
https://community.riscv.org/events/details/risc-v-international-risc-v-open-hours-presents-risc-v-open-hours-16/

Linux on RISC-V
Drew Fustini <dfustini@baylibre.com>

 Slides: tinyurl.com/riscv-kr-22

June 1-3, 2022

https://tinyurl.com/riscv-kr-22
https://kernel-recipes.org/en/2022/

BONUS:
What about RISC-V on FPGAs?

● “RISC-V and FPGAs: Open Source Hardware Hacking” keynote at
Hackaday Supercon 2019 by Dr. Megan Wachs

Introduction

https://www.youtube.com/watch?v=vCG5_nxm2G4

Open source FPGA toolchains
● Project IceStorm for Lattice iCE40 FPGA

○ “A Free and Open Source Verilog-to-Bitstream Flow for iCE40 FPGAs” by Claire Wolf

● Project Trellis for the more capable Lattice ECP5 FPGA

○ “Project Trellis and nextpnr FOSS FPGA flow for the Lattice ECP5” by Myrtle Shah

● Project X-Ray and SymbiFlow for much more capable Xilinix Series 7

○ “Xilinx Series 7 FPGAs Now Have a Fully Open Source Toolchain!” by Tim Ansell

○ “Open Source Verilog-to-Bitstream FPGA synthesis flow, currently targeting Xilinx
7-Series, Lattice iCE40 and Lattice ECP5 FPGAs. Think of it as the GCC of FPGAs”

https://www.youtube.com/watch?v=SOn0g3k0FlE
https://twitter.com/oe1cxw
https://www.youtube.com/watch?v=0se7kNes3EU
https://twitter.com/gatecatte
https://symbiflow.github.io/
http://youtube.com/watch?v=EHePto95qoE
https://twitter.com/mithro

Hackaday Supercon badge
● RISC-V “soft” core on ECP5 FPGA

● Gigantic FPGA In Game Boy Form Factor

https://hackaday.com/2019/11/04/gigantic-fpga-in-a-game-boy-form-factor-2019-supercon-badge-is-a-hardware-siren-song/

Why design an SoC in Python?
● Python has advantages over traditional HDL like VHDL and Verilog

○ Many people are familiar with Python than HDL (hardware description languages)

○ There are currently more software developers than hardware designers

● Migen is a Python framework that can automate chip design

○ Leverages the object-oriented, modular nature of Python

○ Produces Verilog code so it can be used with existing chip design workflows

● “Using Python for creating hardware to record FOSS conferences!”

https://m-labs.hk/gateware/migen/
http://youtube.com/watch?v=MkVX_mh5dOU

source: http://goo.gl/mZJvFQ

http://goo.gl/mZJvFQ

● Based on Migen, builds full SoC that can be loaded into an FPGA

LiteX

https://github.com/enjoy-digital/litex
https://github.com/enjoy-digital/litex
https://github.com/enjoy-digital/litex
https://github.com/enjoy-digital/litex

● “LiteX vs. Vivado: First Impressions”

● Collection of open cores for DRAM, Ethernet, PCIe, SATA and more...

LiteX

https://www.instagram.com/p/BQ5mi7jgkLi/
https://github.com/enjoy-digital/litex

Linux on LiteX-VexRiscv
● VexRiscv: 32-bit Linux-capable RISC-V core

○ Designed to be FPGA friendly

○ Written in Spinal HDL (based on Scala)

● Builds an SoC using VexRiscv core and LiteX modules
○ Such as LiteDRAM, LiteEth, LiteSDCard, LitePCIe

○ “This project demonstrates how high level HDLs (Spinal HDL, Migen) enable new

possibilities and complement each other. Results shown here are the results of a

productive collaboration between open-source communities”

● Supports large number of FPGA dev boards including Digilent Arty A7

https://github.com/litex-hub/linux-on-litex-vexriscv
https://github.com/SpinalHDL/VexRiscv

https://github.com/litex-hub/litex-boards/pull/31

https://github.com/litex-hub/litex-boards/pull/31

https://github.com/enjoy-digital/litedram/pull/97

https://github.com/enjoy-digital/litedram/pull/97

https://twitter.com/GregDavill/status/1231082623633543168

http://twitter.com/GregDavill/status/1231082623633543168
https://twitter.com/GregDavill/status/1231082623633543168

Open Source ECP5 FPGA boards
● Radiona.org ULX3S

○ 32MB SDRAM; ESP32 on-board for WiFi and Bluetooth; $115 on CrowdSupply or Mouser

https://www.crowdsupply.com/radiona/ulx3s
https://www.crowdsupply.com/radiona/ulx3s
https://www.mouser.com/ProductDetail/Crowd-Supply/CS-ULX3S-01?qs=hWgE7mdIu5Sz6R%252BJENFe0A%3D%3D

Open Source ECP5 FPGA boards
● OrangeCrab by Greg Davill

○ 128MB DDR RAM; Adafruit Feather form factor; available for $129

https://github.com/gregdavill/OrangeCrab
https://groupgets.com/manufacturers/good-stuff-department/products/orangecrab

Want to learn FPGAs? Try Fomu!
● Online workshop from Tim Ansell and Sean Cross

● $50 on CrowdSupply

● Fits inside USB port!

● Learn how to use:

○ MicroPython

○ Verilog

○ LiteX

https://www.crowdsupply.com/sutajio-kosagi/fomu
http://workshop.fomu.im
http://crowdsupply.com/sutajio-kosagi/fomu

