

Linux Kernel
Release Model

(and security stuff)

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/presentation-release-model

 60,000 files
24,767,000 lines

Kernel release 4.13.0

4,316 developers
 519 companies

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

10,000 lines added
 2,500 lines removed
 2,100 lines modified

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

10,000 lines added
 2,500 lines removed
 2,100 lines modified

Every day

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

8.5 changes per hour

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

9.7 changes per hour

4.9 & 4.12 release

2.6.20 to 2.6.24-rc8

Old release model

2.6.20 to 2.6.24-rc8

2.2 – January 1999
2.4 – January 2001
2.6 – December 2003

“New” release model

2.6.20 to 2.6.24-rc8

Release every 2-3 months
All releases are stable

“Cambridge Promise”

2.6.20 to 2.6.24-rc8

Will not break userspace.

“Cambridge Promise”

2.6.20 to 2.6.24-rc8

Will not break userspace,
 on purpose.

– July 2007

Version numbers
mean nothing

2.6.20 to 2.6.24-rc8

2.6.x 3.x 2011→

2.6.20 to 2.6.24-rc8

3.x 4.x 2015→

2.6.20 to 2.6.24-rc8

Stable rules

2.6.20 to 2.6.24-rc8

– Bugfix
– Less than 100 lines
– New ids or quirks
– Must be in Linus’s tree

https://www.kernel.org/doc/html/latest/process/stable-kernel-rules.html

https://www.kernel.org/doc/html/latest/process/stable-kernel-rules.html
https://www.kernel.org/doc/html/latest/process/stable-kernel-rules.html

“Longterm kernels”

One picked per year
Maintained for at least 2 years

4.4 4.9 4.14

2.6.20 to 2.6.24-rc8

2.6.20 to 2.6.24-rc8

4.4 9 changes / day
4.9 13 changes / day
4.12 10 changes / day

Every release is stable

Decade old guarantee

Always update your kernel

2.6.20 to 2.6.24-rc8

Can’t update your kernel?

Blame your SoC provider...

2.6.20 to 2.6.24-rc8

“Popular” SoC kernel tree

6171 files changed 2837180 insertions(+), 42568 deletions(-)

2.6.20 to 2.6.24-rc8

“Popular” SoC kernel tree

6171 files changed 2837180 insertions(+), 42568 deletions(-)

Image.lz4 – 3.2 million lines

Linux “like”

2.6.20 to 2.6.24-rc8

Kernel Security

Kernel Security

Almost all bugs can be a “security” issue.

Kernel Security

Almost all bugs can be a “security” issue.

Fix them as soon as possible.

On Wed, 16 Jul 2008, pageexec@freemail.hu wrote:
>
> you should check out the last few -stable releases then and see how
> the announcement doesn't ever mention the word 'security' while fixing
> security bugs

Umm. What part of "they are just normal bugs" did you have issues with?
I expressly told you that security bugs should not be marked as such,
because bugs are bugs.

> in other words, it's all the more reason to have the commit say it's
> fixing a security issue.

No.

Linus wrote in 2008:

> > I'm just saying that why mark things, when the marking have no meaning?
> > People who believe in them are just _wrong_.
>
> what is wrong in particular?

You have two cases:

- people think the marking is somehow trustworthy.

 People are WRONG, and are misled by the partial markings, thinking that
 unmarked bugfixes are "less important". They aren't.

- People don't think it matters

 People are right, and the marking is pointless.
 In either case it's just stupid to mark them. I don't want to do it,
 because I don't want to perpetuate the myth of "security fixes" as a
 separate thing from "plain regular bug fixes".

 They're all fixes. They're all important. As are new features, for that
 matter.

> when you know that you're about to commit a patch that fixes a security
> bug, why is it wrong to say so in the commit?

It's pointless and wrong because it makes people think that other bugs
aren't potential security fixes.

What was unclear about that?

Linus

Above email:
 http://marc.info/?l=linux-kernel&m=121616463003140&w=2

Whole thread:
 http://marc.info/?t=121507404600023&r=4&w=2

http://marc.info/?l=linux-kernel&m=121616463003140&w=2
http://marc.info/?t=121507404600023&r=4&w=2
http://marc.info/?l=linux-kernel&m=121616463003140&w=2
http://marc.info/?t=121507404600023&r=4&w=2

On Wed, 16 Jul 2008, pageexec@freemail.hu wrote:
>
> we went through this and you yourself said that security bugs are *not*
> treated as normal bugs because you do omit relevant information from such
> commits

Actually, we disagree on one fundamental thing. We disagree on
that single word: "relevant".

I do not think it's helpful _or_ relevant to explicitly point out how to
tigger a bug. It's very helpful and relevant when we're trying to chase
the bug down, but once it is fixed, it becomes irrelevant.

You think that explicitly pointing something out as a security issue is
really important, so you think it's always "relevant". And I take mostly
the opposite view. I think pointing it out is actually likely to be
counter-productive.

Reported security issue:

For example, the way I prefer to work is to have people send me and the
kernel list a patch for a fix, and then in the very next email send (in
private) an example exploit of the problem to the security mailing list
(and that one goes to the private security list just because we don't want
all the people at universities rushing in to test it). THAT is how things
should work.

Should I document the exploit in the commit message? Hell no. It's
private for a reason, even if it's real information. It was real
information for the developers to explain why a patch is needed, but once
explained, it shouldn't be spread around unnecessarily.

Linus

Above email:
http://marc.info/?l=linux-kernel&m=121616807207387&w=2

Reporting Security bugs:
https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html

http://marc.info/?l=linux-kernel&m=121616807207387&w=2
https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html
http://marc.info/?l=linux-kernel&m=121616807207387&w=2
https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html

Keeping a Secure System

Take all stable kernel updates

Enable hardening features

“If you are not using a stable /
 longterm kernel, your machine
 is insecure”

– me

“Ceaseless change is the only
 constant thing in Nature.”

– John Candee Dean

github.com/gregkh/presentation-release-model

Linux Kernel
Release Model

(and security stuff)

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/presentation-release-model

I'm going to discuss the how fast the kernel is
moving, how we do it all, and how you can
get involved.

 60,000 files
24,767,000 lines

Kernel release 4.13.0

This was for the 4.13 kernel release, which
happened September 3, 2017.

4,316 developers
 519 companies

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

This makes the Linux kernel the largest
contributed body of software out there that
we know of.

This is just the number of companies that we
know about, there are more that we do not,
and as the responses to our inquiries come
in, this number will go up.

Have surpassed 400 companies for 4 years
now.

10,000 lines added
 2,500 lines removed
 2,100 lines modified

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

10,000 lines added
 2,500 lines removed
 2,100 lines modified

Every day

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

8.5 changes per hour

Kernel releases 4.8.0 – 4.13.0
August 2016 – September 2017

This is 24 hours a day, 7 days a week, for a
full year.

We went this fast the year before this as well,
this is an amazing rate of change.

Interesting note, all of these changes are all
through the whole kernel.

For example, the core kernel is only 5% of the
code, and 5% of the change was to the core
kernel. Drivers are 55%, and 55% was done
to them, it's completely proportional all
across the whole kernel.

9.7 changes per hour

4.9 & 4.12 release

2.6.20 to 2.6.24-rc8

4.9 was the “largest” in number of changes
that we have ever accepted. After 4.9,
things went down a bit for 4.10 and 4.11,
but 4.12 is getting very big.

Now this is just the patches we accepted, not
all of the patches that have been submitted,
lots of patches are rejected, as anyone who
has ever tried to submit a patch can attest
to.

Old release model

2.6.20 to 2.6.24-rc8

2.2 – January 1999
2.4 – January 2001
2.6 – December 2003

“New” release model

2.6.20 to 2.6.24-rc8

Release every 2-3 months
All releases are stable

“Cambridge Promise”

2.6.20 to 2.6.24-rc8

Will not break userspace.

Kernel summit 2007 in Cambridge England

All kernel developers agreed that this is
what we will do, in order to give users a
reason to feel comfortable upgrading their
kernels.

“Cambridge Promise”

2.6.20 to 2.6.24-rc8

Will not break userspace,
 on purpose.

– July 2007

Well, we do not knowingly break userspace,
we accidentally do it all the time, we are just
human.

But we will work very hard to fx the issue.

Note, if no one notices userspace is broken,
it isn’t.

Version numbers
mean nothing

2.6.20 to 2.6.24-rc8

They only mean that one is newer than
another.

2.6.x 3.x 2011→

2.6.20 to 2.6.24-rc8

Big numbers seem to increment “smaller”
over time than small numbers (brains are
wierd)

LinuxCon Japan 2011

I bribed Linus with whisky

Kernel developers drank the bottle within
minutes at the after-party.

3.x 4.x 2015→

2.6.20 to 2.6.24-rc8

Big numbers seem to increment “smaller”
over time than small numbers (brains are
wierd)

2015

How a kernel is developed.
Linus releases a stable kernel
- 2 week merge window from subsystem
maintainers
- rc1 is released
- bugfxes only now
- 2 weeks later, rc2
- bugfxes and regressions
- 2 weeks later,rc3
And so on until all major bugfxes and
regressions are resolved and then the cycle
starts over again.

Greg takes the stable releases from Linus,
and does stable releases with them,
applying only fxes that are already in
Linus's tree.

Requiring fxes to be in Linus's tree frst
ensures that there is no divergence in the
development model.

After Linus releases a new stable release,
the old stable series is dropped.

With the exception of “longterm” stable
releases, those are special, the stick around
for much longer...

Stable rules

2.6.20 to 2.6.24-rc8

– Bugfix
– Less than 100 lines
– New ids or quirks
– Must be in Linus’s tree

https://www.kernel.org/doc/html/latest/process/stable-kernel-rules.html

They only mean that one is newer than
another.

“Longterm kernels”

One picked per year
Maintained for at least 2 years

4.4 4.9 4.14

2.6.20 to 2.6.24-rc8

I pick one kernel release per year to maintain for
longer than one release cycle. This kernel I will
maintain for at least 2 years.

This means there are 2 longterm kernels being
maintained at the same time.

4.4 and 4.9 are the longterm kernel releases I am
currently maintaining

The LTSI project is based on the longterm kernels.

2.6.20 to 2.6.24-rc8

4.4 9 changes / day
4.9 13 changes / day
4.12 10 changes / day

Lots of changes are getting backported

3.10 – averaging 4.5 a day
3.18 – 5 / day

3.16 – 2 / day (debian is tough work...)

Every release is stable

Decade old guarantee

Always update your kernel

2.6.20 to 2.6.24-rc8

Wait what? Why update?

Can’t update your kernel?

Blame your SoC provider...

2.6.20 to 2.6.24-rc8

SoC kernels suck ass.

“Popular” SoC kernel tree

6171 files changed 2837180 insertions(+), 42568 deletions(-)

2.6.20 to 2.6.24-rc8

SoC kernels suck ass.

“Popular” SoC kernel tree

6171 files changed 2837180 insertions(+), 42568 deletions(-)

Image.lz4 – 3.2 million lines

Linux “like”

2.6.20 to 2.6.24-rc8

SoC kernels suck ass.

88% of your kernel has never been reviewed by
anyone in the community…

Kernel Security

Let’s talk about kernel security.

Kernel Security

Almost all bugs can be a “security” issue.

Anything that goes wrong in the kernel can usually
be turned into a “security” problem.

Be it a DoS, or a reboot, or local root exploit, or
worst case, a remote root exploit (very rare,
thankfully.)

Kernel Security

Almost all bugs can be a “security” issue.

Fix them as soon as possible.

Because it’s really hard to determine if a bug is a
“security” issue, our response is that we fx all bugs
as soon as possible once we learn about them.

TTY bug in RH

On Wed, 16 Jul 2008, pageexec@freemail.hu wrote:
>
> you should check out the last few -stable releases then and see how
> the announcement doesn't ever mention the word 'security' while fixing
> security bugs

Umm. What part of "they are just normal bugs" did you have issues with?
I expressly told you that security bugs should not be marked as such,
because bugs are bugs.

> in other words, it's all the more reason to have the commit say it's
> fixing a security issue.

No.

Linus wrote in 2008:

Why we do this, Linus wrote:

> > I'm just saying that why mark things, when the marking have no meaning?
> > People who believe in them are just _wrong_.
>
> what is wrong in particular?

You have two cases:

- people think the marking is somehow trustworthy.

 People are WRONG, and are misled by the partial markings, thinking that
 unmarked bugfixes are "less important". They aren't.

- People don't think it matters

 People are right, and the marking is pointless.
 In either case it's just stupid to mark them. I don't want to do it,
 because I don't want to perpetuate the myth of "security fixes" as a
 separate thing from "plain regular bug fixes".

 They're all fixes. They're all important. As are new features, for that
 matter.

> when you know that you're about to commit a patch that fixes a security
> bug, why is it wrong to say so in the commit?

It's pointless and wrong because it makes people think that other bugs
aren't potential security fixes.

What was unclear about that?

Linus

Above email:
 http://marc.info/?l=linux-kernel&m=121616463003140&w=2

Whole thread:
 http://marc.info/?t=121507404600023&r=4&w=2

Go read the whole email thread (100 emails), it’s a
good summary of why we do what we do.

You also see me get mad at a user, rare...

On Wed, 16 Jul 2008, pageexec@freemail.hu wrote:
>
> we went through this and you yourself said that security bugs are *not*
> treated as normal bugs because you do omit relevant information from such
> commits

Actually, we disagree on one fundamental thing. We disagree on
that single word: "relevant".

I do not think it's helpful _or_ relevant to explicitly point out how to
tigger a bug. It's very helpful and relevant when we're trying to chase
the bug down, but once it is fixed, it becomes irrelevant.

You think that explicitly pointing something out as a security issue is
really important, so you think it's always "relevant". And I take mostly
the opposite view. I think pointing it out is actually likely to be
counter-productive.

Reported security issue:

For example, the way I prefer to work is to have people send me and the
kernel list a patch for a fix, and then in the very next email send (in
private) an example exploit of the problem to the security mailing list
(and that one goes to the private security list just because we don't want
all the people at universities rushing in to test it). THAT is how things
should work.

Should I document the exploit in the commit message? Hell no. It's
private for a reason, even if it's real information. It was real
information for the developers to explain why a patch is needed, but once
explained, it shouldn't be spread around unnecessarily.

Linus

Above email:
http://marc.info/?l=linux-kernel&m=121616807207387&w=2

Reporting Security bugs:
https://www.kernel.org/doc/html/latest/admin-guide/security-bugs.html

Keeping a Secure System

Take all stable kernel updates

Enable hardening features

Do not pick and choose!

The releases have been reviewed by the kernel
developers as a whole, not in individual parts

It is hard, if not impossible, to determine which
patches fx “security” issues and which do not.
Almost every LTS release contains at least one
known security fx, and many yet “unknown”.

If testing shows a problem, the kernel developer
community will react quickly to resolve the issue. If
you wait months or years to do an update, the
kernel developer community will not be able to
even remember what the updates were given the
long delay.

Changes to parts of the kernel that you do not
build/run are fne and can cause no problems to
your system. To try to flter out only the changes
you run will cause a kernel tree that will be
impossible to merge correctly with future upstream
releases.

“If you are not using a stable /
 longterm kernel, your machine
 is insecure”

– me

Your infrastructure HAS to support updating the
kernel. If you can’t do that, you are insecure.

Even the “enterprise” kernels aren’t keeping up with
this rate of change, the exception being Debian.

If you use these kernels, you HAVE to keep up to
date.

Android example demo!

“Ceaseless change is the only
 constant thing in Nature.”

– John Candee Dean

1911 astronomer.

If your operating system isn’t constantly changing,
then it is dead. The world doesn’t stop changing,
learn to embrace the change in order to survive.

“static systems” die.

github.com/gregkh/presentation-release-model

Obligatory Penguin Picture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 37
	Slide 38
	Slide 39
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 37
	Slide 38
	Slide 39

