Introduction to Kernel
Power Management

Kevin Hilman, Linaro

khilman@kernel.org

Kernel Recipes 2015, Paris

_\ O
CPU GPU osF Memory
e =

()

(000000000 =

Complexity is growing... -
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

: Active PM: Underying Frameworks. O
Froc amevork

@)

o :‘::f . O

Ecol O
Runtime PM

0]

Jm“ﬁ O

[IZHe cpus) (Idle olevioes]

o
AcTlive © ©

- (Suspend = o (S

~ Resume
m -
. [Cooooooog] H

Complexity is growing...
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

o

Driver model: key concept

Static PM, System PM

- traditional suspend/resume
CONFIG_PM SLEEP=vV

- system wide, all devices

- Initiated by userspace

- any device can prevent suspend \‘W‘\._

- userspace 1s "frozen"

(c.f. Documentation/power/freezing-of-tasks.txt)

MUST Read: Documentation/power/devices.txt

Driver model: key concept

struct dev_pm_ ops
Exists 1n struct device_driver, struct bus_type, ...

struct dev_pm_ops {

int (*prepare) (struct device *dev);
vold (*complete) (struct device *dev);
int (*suspend) (struct device *dev);
int (*resume) (struct device *dev);

int (*suspend_late) (struct device *dev);
int (*resume_early) (struct device *dev);

Y

echo mem > /sys/power/state

Platform specific: Per-device:
struct platform_suspend_ops struct dev_pm_ops
—>begin ()
—>prepare ()
—>suspend ()
—>prepare ()

—>suspend_late ()
—>suspend_noirqg/()

—>enter ()
—>wake ()
—>resume_noirqg/()
—>resume_ecarly ()
—>finish ()
—>resume ()
—>complete ()

—>end ()

Wakeup from Suspend

Subsystem / Driver control:
-device_1nit_wakeup (dev, bool)

-dev_pm_set_wake_1irqg()
-dev_pm_clear_wake_irqg/()

When wakeup occurs (e.g. in ISR):
- pm_wakeup_event ()

Enable / disable from user space:
- /sys/devices/.../power/wakeup

: Active PM: Underying Frameworks. O
Froc amevork

@)

o :‘::f . O

Ecol O
Runtime PM

0]

Jm“ﬁ O

[IZHe cpus) (Idle olevioes]

o
AcTlive © ©

- (Suspend = o (S

~ Resume
m -
. [Cooooooog] H

Complexity is growing...
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

o

Driver model: key concept

Dynamic PM

- based on "activity"
- Active PM
Save power when doing "something"

- Idle PM
Save power when doing "nothing"

O

Reqgulators

Active PM: Underlying Frameworks O

Frequency scaling: clock framework
-clk_get_rate()
-clk_set_rate()

Voltage scaling: regulator framework
-regulator_get_voltage () O
-regulator_set_voltage ()

- Documentation/power/regulator/consumer.txt

CPUtreq

CPU DVFS using CPUFreq O

- Select "best" OPP based on requirements

- pluggable govemors for selecting "best" OPP O
- performance, powersave, ...

- ondemand: heursitics based on load, tunable
- interactive: ondemand++, tuned for latency

Documentation/cpu-freqg/core.txt
... what about device DVFS? devfreq
Operating Performance Points

OPPs O

- tuple of frequency, minimum voltage
- Described in DT
cpul: cpu@0 {
operating-points = <
/* kHz uv */
300000 1025000
600000 1200000
800000 1313000
1008000 1375000
S,

i
c.f. Documentation/power/opp.txt O

Active

Example... drivers/cpufreq/cpufreq-dt.c

Operating Performance Points
OPPs

- tuple of frequency, minimum voltage

- Described in DT
cpul: cpu@0 {

operating—-points = <
/* kHz uv */

300000 1025000
600000 1200000
800000 1313000

1008000 1375000
>o

4

}

c.f. Documentation/power/opp.txt

CPU DVES using CPUFreq

- Select "best" OPP based on requirements

- pluggable governors for selecting "best" OPP
- performance, powersave, ...

- ondemand: heursitics based on load, tunable
- Interactive: ondemand++, tuned for latency

Documentation/cpu—-freq/core.txt

... what about device DVFS? devireq

Active PM: Underlying Frameworks

Frequency scaling: clock framework
-clk_get_rate ()
-clk_set_rate ()

Voltage scaling: regulator framework
- regulator_get_voltage ()
- regulator_set_voltage ()

- Documentation/power/regulator/consumer.txt

:Exanqﬂe“.drivers/cpufreq/cpufreq—dt.c

: Active PM: Underying Frameworks. O
Froc amevork

@)

o :‘::f . O

Ecol O
Runtime PM

0]

Jm“ﬁ O

[IZHe cpus) (Idle olevioes]

o
AcTlive © ©

- (Suspend = o (S

~ Resume
m -
. [Cooooooog] H

Complexity is growing...
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

o

Driver model: key concept

Idle PM: tickless idle CPU E ‘E DsP M Generic PM Domains (genpd)
=
CONFIG_NOHZ_IDLE=y

Generic implementation of PM domains
C) - Based on runtime PM
- stop periodic tick when idl;
-

- When all devicesin domain are runiime suspended...
- only wakes for next "event"

genpd->power_off ()
PR - When firstdevice in domain isruniime resumed...
or interrupt genpd->power_on ()
- Runtime PM: callbacks

genpd governors
Don'twakeup... Idle for devices: Grouping - allow custom decision making before power gating
anly topress snooze and goback (0sleep Linux PMdomains - e.g.per-device QoS consraints
; - override opsfor a group of devices
e wakaups enabled Devicesare D(;”" grouped nto domains - ifPMdomain present, PMcore uses
-save context - power gakedasa group domain callbacksinstead of type/classbus
- canbe nesied
Use count0-->1 - power gating haslatencyimplications genpd in DT
- —>runtine_resune () - external regulator ramp up, efc. Example genpd:
- restore context
-ete. Documentat ion/power/devices. txt
—

Autosuspend — deferred runtime suspend
~pn_runt ine._set pend_delay ()
- pr_runt ine_ar)

aret ine_p koanate
@) :
Runtime PM API ‘ PM O m a‘ ns
TellPMcore whether device isin use

CPUidle:How deep o seep? T'm about fo use ' in et
~Increment use ount, pm_runime.resume(

drivers/cpuidle/governors/menu.c s

1) Break even point(based on enter/exitimes) "I'm done... for now" O

- looks at predictable events (e.g. timers) - pm_runtime_put (), _sync()

- compares against min residency

- Decrement use count, pm i idle(
2) Latencyolerance

~checks QS (E1 005 _CeU D, LATENCY)
- Gompares against min residency

Similarto legacy clock framework usage for clock gating

clk_enable (),

Excellent bocumsatat ion/power/pr_runt ine. O

BT .
Limitations: Documentat ion/cpuidle/*.txt
- notvery SMP or muli-clster avare X
Quality: PM QoS
© System-wide:e.g PM_Q0S_CPU_DMA_LATENCY
~Used by GPUidie to determine depth ofide state.
‘ : Per-device
attach QoS constraints with specific devices
~genpd: prevent P M domain power off
~BMLCOS_F1AG)0_PORER OFF

~e.g. genpd: perdevice wakeup latency
- DEV_PM_QOS,_RESUVEL LATENCY
~for use by genpd "govemors”

K disable(
3 Performance Impact

biack megic mulipler based on load

- favor shallower states under heavy load

O I1dle for CPUs Idle for devices: Runtime PM

- per-device idle
- single device ata ime
 idleness controlled by d

CPU idle states have "depth""
- more pover savings
- longer wakeeup laency

Documentat ion/p

os_interface. txt

ver, based on activity

- devices are ind epend ent
State Definitions in DT - one device cannot prevent others from

O - legicy: platform-specific driver runtime suspending -

State entry - does NOT affectuser space

- plaform-specific hooks
O - based on carpatible string i

Idle CPUs Idle devices

O O
O 0

O O

Idle for CPUs

idle—-states {
CPU_STBY: standby {

compatible = "gcom,idle-state-stby",
¢ " " "arm, i _ ".
CPU 1dle states have "depth" =i stece’s
: exit—-latency-us = <1>;
- More power SaVlngS min-residency-us = <2>;

- longer wakeup latency &

CPU_SPC: spc {
compatible = "gcom,idle-state-spc",
"arm, idle—-state™;

State Definitions in DT entry-latency—us = <150>;

exit-latency-us = <200>;

- legacy platform_speCIflc drlver r;in—residency—us = <2000>;
bi

cpu@o {

State entry
[...]

- platform'speC1f1C hOOkS cpu—-idle-states = <&CPU_STBY &CPU_SPC>;
- based on compatible String &

Documentation/devicetree/bindings/arm/idle-states.txt

CPUidle: How deep to sleep?

drivers/cpuidle/governors/menu.c

1) Break even point (based on enter/exit times)

- looks at predictable events (e.g. timers)
- compares against min residency

2) Latency tolerance
- checks QoS (PM_Q0OS_CPU_DMA_LATENCY)
- compares against min residency

3) Performance Impact:

- black magic "multiplier" based on load
- favor shallower states under heavy load

Limitations:
- not very SMP or multi-cluster aware

Documentation/cpuidle/*.txt

Idle PM: tickless 1dle

CONFIG_NOHZ_IDLE=y

- stop periodic tick when 1dle
- only wakes for next "event"
or interrupt

Don't wake up... F A
only to press snooze and go back to sleep

Idle PM: tickless idle CPU E ‘E DsP M Generic PM Domains (genpd)
=
CONFIG_NOHZ_IDLE=y

Generic implementation of PM domains
C) - Based on runtime PM
- stop periodic tick when idl;
-

- When all devicesin domain are runiime suspended...
- only wakes for next "event"

genpd->power_off ()
PR - When firstdevice in domain isruniime resumed...
or interrupt genpd->power_on ()
- Runtime PM: callbacks

genpd governors
Don'twakeup... Idle for devices: Grouping - allow custom decision making before power gating
anly topress snooze and goback (0sleep Linux PMdomains - e.g.per-device QoS consraints
; - override opsfor a group of devices
e wakaups enabled Devicesare D(;”" grouped nto domains - ifPMdomain present, PMcore uses
-save context - power gakedasa group domain callbacksinstead of type/classbus
- canbe nesied
Use count0-->1 - power gating haslatencyimplications genpd in DT
- —>runtine_resune () - external regulator ramp up, efc. Example genpd:
- restore context
-ete. Documentat ion/power/devices. txt
—

Autosuspend — deferred runtime suspend
~pn_runt ine._set pend_delay ()
- pr_runt ine_ar)

aret ine_p koanate
@) :
Runtime PM API ‘ PM O m a‘ ns
TellPMcore whether device isin use

CPUidle:How deep o seep? T'm about fo use ' in et
~Increment use ount, pm_runime.resume(

drivers/cpuidle/governors/menu.c s

1) Break even point(based on enter/exitimes) "I'm done... for now" O

- looks at predictable events (e.g. timers) - pm_runtime_put (), _sync()

- compares against min residency

- Decrement use count, pm i idle(
2) Latencyolerance

~checks QS (E1 005 _CeU D, LATENCY)
- Gompares against min residency

Similarto legacy clock framework usage for clock gating

clk_enable (),

Excellent bocumsatat ion/power/pr_runt ine. O

BT .
Limitations: Documentat ion/cpuidle/*.txt
- notvery SMP or muli-clster avare X
Quality: PM QoS
© System-wide:e.g PM_Q0S_CPU_DMA_LATENCY
~Used by GPUidie to determine depth ofide state.
‘ : Per-device
attach QoS constraints with specific devices
~genpd: prevent P M domain power off
~BMLCOS_F1AG)0_PORER OFF

~e.g. genpd: perdevice wakeup latency
- DEV_PM_QOS,_RESUVEL LATENCY
~for use by genpd "govemors”

K disable(
3 Performance Impact

biack megic mulipler based on load

- favor shallower states under heavy load

O I1dle for CPUs Idle for devices: Runtime PM

- per-device idle
- single device ata ime
 idleness controlled by d

CPU idle states have "depth""
- more pover savings
- longer wakeeup laency

Documentat ion/p

os_interface. txt

ver, based on activity

- devices are ind epend ent
State Definitions in DT - one device cannot prevent others from

O - legicy: platform-specific driver runtime suspending -

State entry - does NOT affectuser space

- plaform-specific hooks
O - based on carpatible string i

Idle CPUs Idle devices

O O
O 0

O O

Idle for devices: Runtime PM

- per-device 1dle
- single device at a time
- idleness controlled by driver, based on activity

- devices are independent
- one device cannot prevent others from
runtime suspending

struct dev_pm_ops A{

-dOeS]N()]TaffeCtuserSpace int (*runtime_suspend) (struct device *dev);

int (*runtime_resume) (struct device *dev);
int (*runtime_idle) (struct device *dev);

ti

Runtime PM AP

Tell PM core whether device is in use
"T'm about to use it"

- pm_runtime_get (), _sync()
- Increment use count, pm_runtime_resume()

"T'm done... for now"
- pm_runtime_put (), _sync/()

- Decrement use count, pm_runtime_idle()

Similar to legacy clock framework usage for clock gating
- clk _enable (), clk _disable ()

Excellent: pocument ation/power/pm_runtime.txt

Runtime PM: callbacks

Use count: 1 -->0

- —>runtime_suspend ()
- prepare for low-power state
- ensure wakeups enabled

- save context

Use count: 0 --> 1

- —>runtime_ resume ()

- restore context
- etc.

Autosuspend --- deferred runtime suspend
-pm_runtime_set_autosuspend_delay ()
-pm_runtime_mark_last_busy ()

- pm_runtime_put_autosuspend ()

Idle PM: tickless idle CPU E ‘E DsP M Generic PM Domains (genpd)
=
CONFIG_NOHZ_IDLE=y

Generic implementation of PM domains
C) - Based on runtime PM
- stop periodic tick when idl;
-

- When all devicesin domain are runiime suspended...
- only wakes for next "event"

genpd->power_off ()
PR - When firstdevice in domain isruniime resumed...
or interrupt genpd->power_on ()
- Runtime PM: callbacks

genpd governors
Don'twakeup... Idle for devices: Grouping - allow custom decision making before power gating
anly topress snooze and goback (0sleep Linux PMdomains - e.g.per-device QoS consraints
; - override opsfor a group of devices
e wakaups enabled Devicesare D(;”" grouped nto domains - ifPMdomain present, PMcore uses
-save context - power gakedasa group domain callbacksinstead of type/classbus
- canbe nesied
Use count0-->1 - power gating haslatencyimplications genpd in DT
- —>runtine_resune () - external regulator ramp up, efc. Example genpd:
- restore context
-ete. Documentat ion/power/devices. txt
—

Autosuspend — deferred runtime suspend
~pn_runt ine._set pend_delay ()
- pr_runt ine_ar)

aret ine_p koanate
@) :
Runtime PM API ‘ PM O m a‘ ns
TellPMcore whether device isin use

CPUidle:How deep o seep? T'm about fo use ' in et
~Increment use ount, pm_runime.resume(

drivers/cpuidle/governors/menu.c s

1) Break even point(based on enter/exitimes) "I'm done... for now" O

- looks at predictable events (e.g. timers) - pm_runtime_put (), _sync()

- compares against min residency

- Decrement use count, pm i idle(
2) Latencyolerance

~checks QS (E1 005 _CeU D, LATENCY)
- Gompares against min residency

Similarto legacy clock framework usage for clock gating

clk_enable (),

Excellent bocumsatat ion/power/pr_runt ine. O

BT .
Limitations: Documentat ion/cpuidle/*.txt
- notvery SMP or muli-clster avare X
Quality: PM QoS
© System-wide:e.g PM_Q0S_CPU_DMA_LATENCY
~Used by GPUidie to determine depth ofide state.
‘ : Per-device
attach QoS constraints with specific devices
~genpd: prevent P M domain power off
~BMLCOS_F1AG)0_PORER OFF

~e.g. genpd: perdevice wakeup latency
- DEV_PM_QOS,_RESUVEL LATENCY
~for use by genpd "govemors”

K disable(
3 Performance Impact

biack megic mulipler based on load

- favor shallower states under heavy load

O I1dle for CPUs Idle for devices: Runtime PM

- per-device idle
- single device ata ime
 idleness controlled by d

CPU idle states have "depth""
- more pover savings
- longer wakeeup laency

Documentat ion/p

os_interface. txt

ver, based on activity

- devices are ind epend ent
State Definitions in DT - one device cannot prevent others from

O - legicy: platform-specific driver runtime suspending -

State entry - does NOT affectuser space

- plaform-specific hooks
O - based on carpatible string i

Idle CPUs Idle devices

O O
O 0

O O

—_—

e
—

e

Idle for devices: Grouping

Devices are often grouped into domains
- power gated as a group

- can be nested

- power gating has latency implications
- external regulator ramp up, etc.

Documentation/power/devices.txt

Linux: PM domains

- override ops for a group of devices

e

- if PM domain present, PM core uses
domain callbacks instead of type/class/bus

struct dev_pm_domain {
struct dev_pm_ops ops;

bi

Generic PM Domains (genpd)

Generic implementation of PM domains

- Based on runtime PM

- When all devices in domain are runtime suspended...
genpd—->power_off ()

- When first device in domain is runtime resumed...
genpd—->power_on ()

genpd governors
- allow custom decision making before power gating
- €.9. per-device QoS constraints

genpd in DT

Example genpd:

power: power—-controller@12340000 {
compatible = "foo,power-controller";
reg = <0x12340000 0x1000>;
fpower—-domain-cells = <1>;

s

Example use by device:

leaky—-device@12350000 A

compatible = "foo,1-leak—-current";
reg = <0x12350000 0x1000>;
power—-domains = <&power 0>;

s

From: Documentation/devicetree/bindings/power/power—-domain.txt

Quality: PM QoS

System-wide: e.g PM_QO0S_CPU_DMA_LATENCY
- Used by CPUidle to determine depth of idle state

Per-device

- attach QoS constraints with specific devices
- genpd: prevent PM domain power off

- PM_QOS_FLAG_NO_POWER_OFF

- €.9. genpd: per-device wakeup latency
- DEV_PM_QOS_RESUME_LATENCY
- for use by genpd "governors"

Documentation/power/pm_gos_interface.txt

: Active PM: Underying Frameworks. O
Froc amevork

@)

o :‘::f . O

Ecol O
Runtime PM

0]

Jm“ﬁ O

[IZHe cpus) (Idle olevioes]

o
AcTlive © ©

- (Suspend = o (S

~ Resume
m -
. [Cooooooog] H

Complexity is growing...
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

o

Driver model: key concept

Runtime PM, genpd ideas

Unify idle for CPUs and devices

- use runtime PM for CPUs

- use runtime PM for CPU-connected "extras"

(eg. GIC, PMUs, VFP, CoreSight, etc.)

- combine into a "CPU genpd"

Extend to CPU Clusters X e ;
- model clusters as genpd made up of "CPU genpd"s

plus shared L2$
- when CPUs in cluster are idle (runtime suspended)
cluster genpd can hit low-power state (off)

Energy-aware scheduling: EAS

(£ \ N
W O Y k | m An on-going effort to improve energy efficiency of the scheduler.

- Teach the scheduler new heuristics for task placement to
take advantage of energy-saving hardware

- Integrate CP Uidle and CP Ufreq with the scheduler
- scheduler tracks load statistics for its own decision making
\\ / (e.g. task placement, load balancing, etc.)

- CPUidle / CPUfreq governor decisions are based on their
own load-based calculations, heuristics (and some black magic).

These are to be replaced by scheduler-driven data

Runtime PM, genpd ideas

Unify idle for CPUs and devices

- use runtime PM for CPUs

- use runtime PM for CPU-connected "extras"
(e.g. GIC, PMUs, VFP, CoreSight, etc.)

- combine into a "CPU genpd"

Extend to CPU Clusters

- model clusters as genpd made up of "CPU genpd"s
plus shared L2%

- when CPUs in cluster are idle (runtime suspended)
cluster genpd can hit low-power state (off)

Energy-aware scheduling: EAS

An on-going effort to improve energy efficiency of the scheduler.

- Teach the scheduler new heuristics for task placement to
take advantage of energy-saving hardware

- Integrate CPUidle and CPUfreq with the scheduler

- scheduler tracks load statistics for its own decision making
(e.g. task placement, load balancing, etc.)

- CPUidle / CPUfreq governor decisions are based on their
own load-based calculations, heuristics (and some black magic).

These are to be replaced by scheduler-driven data

: Active PM: Underying Frameworks. O
Froc amevork

@)

o :‘::f . O

Ecol O
Runtime PM

0]

Jm“ﬁ O

[IZHe cpus) (Idle olevioes]

o
AcTlive © ©

- (Suspend = o (S

~ Resume
m -
. [Cooooooog] H

Complexity is growing...
- more CPUs

- more integrated devices

- more power domains

- micro controllers Kernel is evolving....
- firmware, etc.

o

Driver model: key concept

Phew...
that was all
just a bad
dream

0O \ Questions?

Slides under CC-BY-SA 3.0

http://people.linaro.org/~kevin.hilman/conf/kr2015/

