lo_uring meets network

Kernel Recipes 2023

Pavel Begunkov N Meta

e JORING_OP_SENDMSG
e JIORING_OP_RECVMSG

submission completion / waiting
struct msghdrmsg =1{ ... }; ret = io_uring_wait_cqe(&ring, &cqge);
msg_flags = MSG_WAITALL,; assert(cqe->user_data == tag);

result = cqe->res;
sge = io_uring_get_sge(&ring);
io_uring_prep_sendmsg(sqge, sockfd,
&msg, msg_flags);
sqe->user_data = tag;

io_uring_submit(ring);

Early days execution

(Submit k

_ request

r

Execute

\

Success?

MSG_DONTWAIT
\ J

r

.

Worker pool

\

.

Complete

J

A

J

Polling

IORING_OP_POLL_ADD

e Asynchronous, as it should be
e Polling a single file
e Terminates after the first desired event
o User has to send another request to continue polling
e (Can be cancelled by IORING_OP_POLL_REMOVE
or IORING_OP_ASYNC_CANCEL

What if we combine 10 with polling?

Kernel internally polls when MSG_DONTWAIT failed
Transparent, uapi stays the same

Check support with IORING_FEAT_FAST_POLL

~\

(.) (
Submit Execute Success?

g : = Complete
request nowait
. J . J

A

i Poll event

Tip 1: use IORING_RECVSEND_POLL_FIRST with receive requests

e Starts with polling, skips the first nowait attempt
e Useful when it's likely have to wait

e Usually not useful for sends

Submit

Failed?

Poll

Poll event

p
Execute

nowait)

\

f

.

Complete

\

J

Tip 2: i0o_uring supports MSG_WAITALL, retries short 10
e \Works with recv as well as sends

e Ignored by io_uring unless it's a streaming socket like TCP

do {
left = total_len - done;
ret = do_io(buf + done, left);

done +=ret;

} while (done < total_len && (msg_flags & MSG_WAITALL))

Memory consumption

e Each recv takes and holds a buffer
e Buffers can’t be reused before recv completes
e Many (slow) connections may lock up too much memory

Failed?
(.) (\L) () ()
Submit Poll event Execute
— Poll ----—-----"---- > . = Complete
recv nhowait
y, _ y, _ y, _ y,
- ————— — — — — m e e e e e e e e e — == - -0

Can’treuse the buffer

Provided buffers

Let’'s the kernel have a buffer pool!

Submit

_addr=NULL
J

Poll

:

p
Poll event Execute

J

<=

nowait)

N

f

Put buffer

Get buffer

Buffer pool

.

Complete

N

J

Provided buffers: overview

e |n-kernel buffer pool
o User can register multiple pools
o Each pool has an ID to refer to
o Usually, buffers in a pool are same sized
e Don't set buffer at submission, e.g. sqe->addr = NULL,
o sqe->flags |= IOSQE_BUFFER_SELECT
o And specify the buffer pool ID to use
e Request grabs a buffer on demand
o Requests don’t hold a buffer while polling
o It'll grab it right before attempting to execute
e The buffer ID will be returned in cge->flags
e The user should keep refilling the pool

10

Provided buffers: returning buffers

e V1: IORING_OP _PROVIDE_BUFFERS
o Buffers are returned by sending a special request
o Slow and inefficient

e V2: IORING_REGISTER_PBUF_RING
o Another kernel-user shared ring
o User returns buffers by putting them in the ring
o Nicely wrapped in liburing

11

Provided buffers v2

Buffer
submit /, \\60;? %,
! \
SQ | CQ 1 PBUF
\ / / \ / userspace

L

complete
»
O
N\
\\Qéé
N
\ e
\
\

io_uring

Back to polling

Submit

Poll

poll event

f

.

Complete

N

J

Why poll requests terminate after the first event?

13

Multishot poll

(" N 4 ~ -
poll event (r =N

Submit —| Poll }[--F-—--------- >
. Yy, _ y \POSt CQE
J

Multishot accept

() () " t () f(\
. poll even r
Submit —+ Poll }--"--------- >l do accept [(—
P Post CQE

. J . J . J \
J

Multishot recv

i 1 [k oll event i k ((r \
Submit — Poll - polevent. > dorecv [—
. J L) . |) \Post CQE
)

|
|
|
| Get buffer
|
|

Buffer pool

Notes on multishot...

e Requests can be cancelled via IORING_OP_ASYNC_CANCEL
o Or by shutting down the socket

e Requests can falil...
o Resend if recoverable: out of buffers, CQ is full, -ENOMEM, etc.

e Completion Queue is finite
o io_uring will save overflow CQEs, but it's slow
m User has to enter the kernel to flush overflown CQE
o Multishot requests will be terminated

e Linked requests don't work well with multishots

17

Fixed files

IOSQE_FIXED_FILE optimises per request file refcounting
e Makes much sense with send requests
e But not recommended with potentially time unbound requests

o May cause problems
e Doesn’t benefit multishots, cost is already amortised

18

Connection management

IORING_OP_CLOSE - closes a file descriptor.
e Interoperable with close(2) for regular (non-10SQE_FIXED_FILE) files

Close doesn't kill a connection with in-flight requests
e Either cancel requests

e Or IORING_OP_SHUTDOWN / shutdown(2) it first

There are IORING_OP_ACCEPT, IORING_OP_CONNECT and IORING_OP_SOCKET

19

Zerocopy

Zerocopy send
e IORING_OP_SEND_zcC: 2 CQEs, “queued” and “completed”
e Need to add vectored |O support

Zerocopy receive

e RFC is out, look for updates

e Multishot recv applications are already half prepared

® htips://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

20

https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

Task execution

i Submit k

_ request

g Execute)1 Success?
nowait
_ y,
X
. Notify the task
y |
4)
Poll
_ W,

Complete

21

Task work

Task IRQ

syscall

execute IO

restart
syscall

y Goll evena

aborted

22

Task work

Task IRQ

userspace

continue
userspace

y Goll evena

switch into
kernel

23

Task work overview

e Poll event arrives in an IRQ* context
e \We wake up the submitter task to execute the IO
e task work similar to signals but in-kernel
o Wakes the task if sleeping
o Interrupts any syscall
o Forces userspace into the kernel
e Hot path is generally executed by the submitter task

24

IORING_SETUP_COOP_TASKRUN

Task IRQ
(\o’(\W Goll evea
userspace /
any syscall
execute 1O

25

IORING_SETUP_COOP_TASKRUN

e Doesn't interrupt running userspace
e Still aborts running syscalls
e \Will be executed with the next syscall
o Hence the app has to eventually make a syscall
e The user should not busy poll CQ
o It's almost never a good idea regardless

26

IORING_SETUP_DEFER_TASKRUN

Task IRQ
userspace y Eoll evea
syscall [
userspace l
CQ wait & ||
execute IO

IORING_SETUP_DEFER_TASKRUN

® Executed only in io_uring_enter(2) syscall
® User has to enter the kernel to wait for events

e Requires IORING SETUP SINGLE ISSUER

28

Performance

Performance highly depends on batching

e submission batching
e as well as completion batching

Be prepared for tradeoffs

e Wait for longer until there is more to submit
e Wait for multiple completions, possibly with a timeout
e Throughput vs latency

29

Gluing together

e One io_uring instance per process
o No need to share, no synchronisation around queues
o Add IORING_SETUP_SINGLE_ISSUER and IORING_SETUP_DEFER_TASKRUN

e Processes communicate via IORING_OP _MSG_RING

e Each process serves multiple sockets
o The more sockets per process the better, improves batching

e Simple IORING_OP_SENDI[MSG] requests are usually fine
o Often complete by the time the submission syscall returns

e One recv request for each socket
o Needs a provided buffer pool

30

Timeouts

e CQ waiting with a timeout, see io_uring_wait_cqe_timeout(), etc.
e IORING_OP_TIMEOUT - timeout request, supports multishot
e IORING_OP_LINK_TIMEOUT - per request timeout

o There is a cost, app might want to implement it in userspace via
IORING_OP_TIMEOUT + IORING_OP_ASYNC_CANCEL

3

References

e Liburing - i0o_uring userspace library
github.com/axboe/liburing/
git://git.kernel.dk/liburing.git

e \Write up about networking
https://github.com/axboe/liburing/wiki/io uring-and-networking-in-2023

e Benchmarking
https://qithub.com/dylanZA/netbench

e i0_uring mailing list
io-uring@vger.kernel.org

e Zerocopy receive
https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

e Folly library: supports io_uring with all modern features
https://github.com/facebook/folly.qit

32

http://github.com/axboe/liburing/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://github.com/dylanZA/netbench
mailto:io-uring@vger.kernel.org
https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/
https://github.com/facebook/folly.git

