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struct msghdr msg = { … };

msg_flags = MSG_WAITALL;

sqe = io_uring_get_sqe(&ring);

io_uring_prep_sendmsg(sqe, sockfd,

                                                   &msg, msg_flags);

sqe->user_data = tag;

io_uring_submit(ring);

● IORING_OP_SENDMSG
● IORING_OP_RECVMSG

ret = io_uring_wait_cqe(&ring, &cqe);

assert(cqe->user_data == tag);

result = cqe->res;

submission completion / waiting



Early days execution
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MSG_DONTWAIT
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Worker pool
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IORING_OP_POLL_ADD
● Asynchronous, as it should be
● Polling a single file
● Terminates after the first desired event

○ User has to send another request to continue polling
● Can be cancelled by IORING_OP_POLL_REMOVE

                                               or IORING_OP_ASYNC_CANCEL

Polling



● What if we combine IO with polling?
● Kernel internally polls when MSG_DONTWAIT failed
● Transparent, uapi stays the same
● Check support with IORING_FEAT_FAST_POLL
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Submit
request

Execute 

nowait Complete
Success?
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Tip 1: use IORING_RECVSEND_POLL_FIRST with receive requests

● Starts with polling, skips the first nowait attempt
● Useful when it’s likely have to wait
● Usually not useful for sends

Submit Execute 

nowait CompletePoll Poll event

Failed?
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Tip 2: io_uring supports MSG_WAITALL, retries short IO

● Works with recv as well as sends

● Ignored by io_uring unless it’s a streaming socket like TCP

do {

        left = total_len - done;

        ret = do_io(buf + done, left);

        done += ret;

        // poll_wait();
} while (done < total_len && (msg_flags & MSG_WAITALL))
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● Each recv takes and holds a buffer
● Buffers can’t be reused before recv completes
● Many (slow) connections may lock up too much memory

Memory consumption

Submit
recv

Execute 

nowait CompletePoll Poll event

Failed?

Can’t reuse the buffer
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Provided buffers
Let’s the kernel have a buffer pool!

Submit
addr=NULL

Execute 

nowait CompletePoll Poll event

Buffer pool

Get buffer
Failed?

Put buffer



● In-kernel buffer pool
○ User can register multiple pools
○ Each pool has an ID to refer to
○ Usually, buffers in a pool are same sized

● Don’t set buffer at submission, e.g. sqe->addr = NULL;
○ sqe->flags |= IOSQE_BUFFER_SELECT

○ And specify the buffer pool ID to use
● Request grabs a buffer on demand

○ Requests don’t hold a buffer while polling
○ It’ll grab it right before attempting to execute

● The buffer ID will be returned in cqe->flags
● The user should keep refilling the pool
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Provided buffers: overview
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● V1: IORING_OP_PROVIDE_BUFFERS
○ Buffers are returned by sending a special request
○ Slow and inefficient

● V2: IORING_REGISTER_PBUF_RING
○ Another kernel-user shared ring
○ User returns buffers by putting them in the ring
○ Nicely wrapped in liburing

Provided buffers: returning buffers
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Provided buffers v2
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Back to polling

Submit CompletePoll poll event

Why poll requests terminate after the first event?
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Multishot poll

Submit Poll poll event
Post CQE
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Multishot accept

Submit do acceptPoll poll event
Post CQE
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Multishot recv

Submit do recvPoll poll event

Buffer pool

Get buffer

Post CQE
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Notes on multishot…

● Requests can be cancelled via IORING_OP_ASYNC_CANCEL
○ Or by shutting down the socket  

● Requests can fail…
○ Resend if recoverable: out of buffers, CQ is full, -ENOMEM, etc.

● Completion Queue is finite
○ io_uring will save overflow CQEs, but it’s slow

■ User has to enter the kernel to flush overflown CQE
○ Multishot requests will be terminated

● Linked requests don’t work well with multishots



Fixed files
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IOSQE_FIXED_FILE optimises per request file refcounting
● Makes much sense with send requests
● But not recommended with potentially time unbound requests

○ May cause problems
● Doesn’t benefit multishots, cost is already amortised



Connection management
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IORING_OP_CLOSE - closes a file descriptor.
● Interoperable with close(2) for regular (non-IOSQE_FIXED_FILE) files

Close doesn’t kill a connection with in-flight requests
● Either cancel requests
● Or IORING_OP_SHUTDOWN / shutdown(2) it first

There are IORING_OP_ACCEPT, IORING_OP_CONNECT and IORING_OP_SOCKET



Zerocopy
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Zerocopy send
● IORING_OP_SEND_ZC:  2 CQEs, “queued” and “completed”  
● Need to add vectored IO support

Zerocopy receive
● RFC is out, look for updates
● Multishot recv applications are already half prepared
● https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/
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Task execution
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Poll

Task

IRQNotify the task
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Task work
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Task work



24

● Poll event arrives in an IRQ* context
● We wake up the submitter task to execute the IO
● task_work similar to signals but in-kernel

○ Wakes the task if sleeping
○ Interrupts any syscall
○ Forces userspace into the kernel

● Hot path is generally executed by the submitter task

Task work overview
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IORING_SETUP_COOP_TASKRUN
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IORING_SETUP_COOP_TASKRUN

● Doesn’t interrupt running userspace
● Still aborts running syscalls
● Will be executed with the next syscall

○ Hence the app has to eventually make a syscall
● The user should not busy poll CQ

○ It’s almost never a good idea regardless
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IORING_SETUP_DEFER_TASKRUN



IORING_SETUP_DEFER_TASKRUN

● Executed only in io_uring_enter(2) syscall

● User has to enter the kernel to wait for events

● Requires IORING_SETUP_SINGLE_ISSUER
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Performance
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Performance highly depends on batching

● submission batching
● as well as completion batching

Be prepared for tradeoffs

● Wait for longer until there is more to submit
● Wait for multiple completions, possibly with a timeout
● Throughput vs latency



Gluing together
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● One io_uring instance per process
○ No need to share, no synchronisation around queues
○ Add IORING_SETUP_SINGLE_ISSUER and IORING_SETUP_DEFER_TASKRUN

● Processes communicate via IORING_OP_MSG_RING

● Each process serves multiple sockets
○ The more sockets per process the better, improves batching

● Simple IORING_OP_SEND[MSG] requests are usually fine
○ Often complete by the time the submission syscall returns

● One recv request for each socket
○ Needs a provided buffer pool



● CQ waiting with a timeout, see io_uring_wait_cqe_timeout(), etc.
● IORING_OP_TIMEOUT - timeout request, supports multishot
● IORING_OP_LINK_TIMEOUT - per request timeout

○ There is a cost, app might want to implement it in userspace via
IORING_OP_TIMEOUT + IORING_OP_ASYNC_CANCEL
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Timeouts
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● Liburing - io_uring userspace library 
github.com/axboe/liburing/
git://git.kernel.dk/liburing.git

● Write up about networking
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023

● Benchmarking
https://github.com/dylanZA/netbench

● io_uring mailing list
io-uring@vger.kernel.org

● Zerocopy receive
https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

● Folly library: supports io_uring with all modern features
https://github.com/facebook/folly.git
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