
io_uring meets network
Kernel Recipes 2023

Pavel Begunkov

2

struct msghdr msg = { … };

msg_flags = MSG_WAITALL;

sqe = io_uring_get_sqe(&ring);

io_uring_prep_sendmsg(sqe, sockfd,

 &msg, msg_flags);

sqe->user_data = tag;

io_uring_submit(ring);

● IORING_OP_SENDMSG
● IORING_OP_RECVMSG

ret = io_uring_wait_cqe(&ring, &cqe);

assert(cqe->user_data == tag);

result = cqe->res;

submission completion / waiting

Early days execution

3

Submit
request

Execute
MSG_DONTWAIT

Complete
Success?

Worker pool

4

IORING_OP_POLL_ADD
● Asynchronous, as it should be
● Polling a single file
● Terminates after the first desired event

○ User has to send another request to continue polling
● Can be cancelled by IORING_OP_POLL_REMOVE

 or IORING_OP_ASYNC_CANCEL

Polling

● What if we combine IO with polling?
● Kernel internally polls when MSG_DONTWAIT failed
● Transparent, uapi stays the same
● Check support with IORING_FEAT_FAST_POLL

5

Submit
request

Execute

nowait Complete
Success?

Poll

Poll event

6

Tip 1: use IORING_RECVSEND_POLL_FIRST with receive requests

● Starts with polling, skips the first nowait attempt
● Useful when it’s likely have to wait
● Usually not useful for sends

Submit Execute

nowait CompletePoll Poll event

Failed?

7

Tip 2: io_uring supports MSG_WAITALL, retries short IO

● Works with recv as well as sends

● Ignored by io_uring unless it’s a streaming socket like TCP

do {

 left = total_len - done;

 ret = do_io(buf + done, left);

 done += ret;

 // poll_wait();
} while (done < total_len && (msg_flags & MSG_WAITALL))

8

● Each recv takes and holds a buffer
● Buffers can’t be reused before recv completes
● Many (slow) connections may lock up too much memory

Memory consumption

Submit
recv

Execute

nowait CompletePoll Poll event

Failed?

Can’t reuse the buffer

9

Provided buffers
Let’s the kernel have a buffer pool!

Submit
addr=NULL

Execute

nowait CompletePoll Poll event

Buffer pool

Get buffer
Failed?

Put buffer

● In-kernel buffer pool
○ User can register multiple pools
○ Each pool has an ID to refer to
○ Usually, buffers in a pool are same sized

● Don’t set buffer at submission, e.g. sqe->addr = NULL;
○ sqe->flags |= IOSQE_BUFFER_SELECT

○ And specify the buffer pool ID to use
● Request grabs a buffer on demand

○ Requests don’t hold a buffer while polling
○ It’ll grab it right before attempting to execute

● The buffer ID will be returned in cqe->flags
● The user should keep refilling the pool

10

Provided buffers: overview

11

● V1: IORING_OP_PROVIDE_BUFFERS
○ Buffers are returned by sending a special request
○ Slow and inefficient

● V2: IORING_REGISTER_PBUF_RING
○ Another kernel-user shared ring
○ User returns buffers by putting them in the ring
○ Nicely wrapped in liburing

Provided buffers: returning buffers

12

Provided buffers v2

13

Back to polling

Submit CompletePoll poll event

Why poll requests terminate after the first event?

14

Multishot poll

Submit Poll poll event
Post CQE

15

Multishot accept

Submit do acceptPoll poll event
Post CQE

16

Multishot recv

Submit do recvPoll poll event

Buffer pool

Get buffer

Post CQE

17

Notes on multishot…

● Requests can be cancelled via IORING_OP_ASYNC_CANCEL
○ Or by shutting down the socket

● Requests can fail…
○ Resend if recoverable: out of buffers, CQ is full, -ENOMEM, etc.

● Completion Queue is finite
○ io_uring will save overflow CQEs, but it’s slow

■ User has to enter the kernel to flush overflown CQE
○ Multishot requests will be terminated

● Linked requests don’t work well with multishots

Fixed files

18

IOSQE_FIXED_FILE optimises per request file refcounting
● Makes much sense with send requests
● But not recommended with potentially time unbound requests

○ May cause problems
● Doesn’t benefit multishots, cost is already amortised

Connection management

19

IORING_OP_CLOSE - closes a file descriptor.
● Interoperable with close(2) for regular (non-IOSQE_FIXED_FILE) files

Close doesn’t kill a connection with in-flight requests
● Either cancel requests
● Or IORING_OP_SHUTDOWN / shutdown(2) it first

There are IORING_OP_ACCEPT, IORING_OP_CONNECT and IORING_OP_SOCKET

Zerocopy

20

Zerocopy send
● IORING_OP_SEND_ZC: 2 CQEs, “queued” and “completed”
● Need to add vectored IO support

Zerocopy receive
● RFC is out, look for updates
● Multishot recv applications are already half prepared
● https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

21

Task execution

Submit
request

Execute

nowait Complete
Success?

Poll

Task

IRQNotify the task

22

Task work

23

Task work

24

● Poll event arrives in an IRQ* context
● We wake up the submitter task to execute the IO
● task_work similar to signals but in-kernel

○ Wakes the task if sleeping
○ Interrupts any syscall
○ Forces userspace into the kernel

● Hot path is generally executed by the submitter task

Task work overview

25

IORING_SETUP_COOP_TASKRUN

26

IORING_SETUP_COOP_TASKRUN

● Doesn’t interrupt running userspace
● Still aborts running syscalls
● Will be executed with the next syscall

○ Hence the app has to eventually make a syscall
● The user should not busy poll CQ

○ It’s almost never a good idea regardless

27

IORING_SETUP_DEFER_TASKRUN

IORING_SETUP_DEFER_TASKRUN

● Executed only in io_uring_enter(2) syscall

● User has to enter the kernel to wait for events

● Requires IORING_SETUP_SINGLE_ISSUER

28

Performance

29

Performance highly depends on batching

● submission batching
● as well as completion batching

Be prepared for tradeoffs

● Wait for longer until there is more to submit
● Wait for multiple completions, possibly with a timeout
● Throughput vs latency

Gluing together

30

● One io_uring instance per process
○ No need to share, no synchronisation around queues
○ Add IORING_SETUP_SINGLE_ISSUER and IORING_SETUP_DEFER_TASKRUN

● Processes communicate via IORING_OP_MSG_RING

● Each process serves multiple sockets
○ The more sockets per process the better, improves batching

● Simple IORING_OP_SEND[MSG] requests are usually fine
○ Often complete by the time the submission syscall returns

● One recv request for each socket
○ Needs a provided buffer pool

● CQ waiting with a timeout, see io_uring_wait_cqe_timeout(), etc.
● IORING_OP_TIMEOUT - timeout request, supports multishot
● IORING_OP_LINK_TIMEOUT - per request timeout

○ There is a cost, app might want to implement it in userspace via
IORING_OP_TIMEOUT + IORING_OP_ASYNC_CANCEL

31

Timeouts

32

● Liburing - io_uring userspace library
github.com/axboe/liburing/
git://git.kernel.dk/liburing.git

● Write up about networking
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023

● Benchmarking
https://github.com/dylanZA/netbench

● io_uring mailing list
io-uring@vger.kernel.org

● Zerocopy receive
https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/

● Folly library: supports io_uring with all modern features
https://github.com/facebook/folly.git

References

http://github.com/axboe/liburing/
https://github.com/axboe/liburing/wiki/io_uring-and-networking-in-2023
https://github.com/dylanZA/netbench
mailto:io-uring@vger.kernel.org
https://lore.kernel.org/io-uring/20230826011954.1801099-1-dw@davidwei.uk/
https://github.com/facebook/folly.git

