

Presented by:
Steven Rostedt

srostedt@redhat.com

Real Time Linux
Who Needs It?

(Not you!)

mailto:srostedt@redhat.com

What is Real Time?

● Real Time Delivery?

● Real Time Video?

● Real Time Clock?

● Real Time Operating System?

● Real Time Presentation Language
Translation?

● Real Time Presentation Stop Clock

What is Real Time?

● Real Time Delivery?

● Real Time Video?

● Real Time Clock?

● Real Time Operating System?

● Real Time Presentation Language
Translation?

● Real Time Presentation Stop Clock

What is a Real Time
Operating System?

● Faster? NO!

● Real Time does not mean “fast”!

● What does an RTOS give us?

– Determinism

– Determinism

– Determinism

What does being
Deterministic give us?

● Repeatability

● Reliable Results

● Known Worse Case Scenarios

● Known Reaction Times

Real Time (Hard vs Soft)

● Hard Real Time

– Mathematically provable

● More code, much harder to prove

– Bounded Latency

● Soft Real Time

– Can deal with outliers

– Tries to be reliable

May have unbounded latency

Hard Real Time Examples

● Airplane engine controls

● Nuclear power plants

● Mars Lander

● Space Shuttle

Soft Real Time Examples

● Video systems

● Video games

● Some communication systems

 Vanilla Linux is a Soft Real Time System!

Real Time Linux
(PREEMPT_RT)

● Is it a Soft Real Time system?

– Does not allow for outliers

– Does not allow for unbounded latency

● Is it a “Hard Real Time” system?

– Too big to be mathematically proven

● What is PREEMPT_RT then?

– Hard Real Time “Designed”!

Real Time Linux
(PREEMPT_RT)

● Can not be mathematically proven

– It is just too darn big

● (people are trying though!)

● Tries to bound all latency

– Unexpected latency are considered bugs

● The design follows that of any hard real
time operating system.

Who uses PREEMPT_RT?

● Financial industries (NASDAQ)

● Audio recordings

– A latency causes a “scratching” sound

● Navigational systems (TomTom / Garmin)

● Can not fail...

– but nobody dies if it does (hopefully)

What PREEMPT_RT gave to
current Linux

● High resolution timers

● Generic interrupt design

● Preemptible RCU locks

● Real Time scheduler

● EDF scheduler (SCHED_DEADLINE)

● Threaded interrupts

● Priority inheritance futexes

● Lockdep

● Ftrace - The Linux kernel tracer

What is left?

● Spin locks to sleeping mutexes

– Interrupts do not need to be disabled

– Helps against reaction time latency

● task wakes up, timer response, etc

● Priority inheritance on kernel locks

– Helps against “unbounded priority
inversion”

What is latency?

● The time between when an event is
expected to happen, to the time it actually
happens

● Causes of latency?

– Interrupts being disabled

– Current interrupt executing

– Shared resources and locking

Interrupts

Interrupts disabled

Interrupt Inversion

Threaded Interrupts

Interrupt Threads
ps ax |grep irq
root 52 0.0 0.0 0 0 ? S 19:15 0:00 [irq/9-acpi]
root 68 0.0 0.0 0 0 ? S 19:15 0:00 [irq/24-pciehp]
root 69 0.0 0.0 0 0 ? S 19:15 0:00 [irq/25-pciehp]
root 72 0.2 0.0 0 0 ? S 19:15 0:26 [irq/14-ata_piix]
root 73 0.0 0.0 0 0 ? S 19:15 0:00 [irq/15-ata_piix]
root 79 0.0 0.0 0 0 ? S 19:15 0:00 [irq/19-ata_piix]
root 86 0.0 0.0 0 0 ? S 19:15 0:00 [irq/18-ata_gene]
root 93 0.0 0.0 0 0 ? S 19:15 0:00 [irq/19-ehci_hcd]
root 94 0.0 0.0 0 0 ? S 19:15 0:00 [irq/23-ehci_hcd]
root 95 0.0 0.0 0 0 ? S 19:15 0:00 [irq/16-uhci_hcd]
root 96 1.1 0.0 0 0 ? S 19:15 2:13 [irq/21-uhci_hcd]
root 97 0.0 0.0 0 0 ? S 19:15 0:00 [irq/18-uhci_hcd]
root 99 0.0 0.0 0 0 ? S 19:15 0:00 [irq/23-uhci_hcd]
root 100 0.0 0.0 0 0 ? S 19:15 0:00 [irq/19-uhci_hcd]
root 102 0.0 0.0 0 0 ? S 19:15 0:00 [irq/16-uhci_hcd]
root 104 0.0 0.0 0 0 ? S 19:15 0:00 [irq/12-i8042]
root 105 0.0 0.0 0 0 ? S 19:15 0:00 [irq/1-i8042]
root 108 0.0 0.0 0 0 ? S 19:15 0:00 [irq/8-rtc0]
root 114 0.0 0.0 0 0 ? S 19:15 0:00 [irq/4-serial]
root 315 0.0 0.0 0 0 ? S 19:15 0:00 [irq/27-i915]
root 698 0.0 0.0 0 0 ? S 19:15 0:00 [irq/6-floppy]
root 1676 0.0 0.0 0 0 ? S 19:15 0:00 [irq/18-i801_smb]
root 2012 0.0 0.0 0 0 ? S 19:15 0:00 [irq/28-snd_hda_]

Latency

● Latency always happens

– Events are never instantaneous

● Priority Inversion

– When something runs when something else should
be

– Always happens too

● Bounded Priority Inversion

– We know the worse case

● Unbounded Priority Inversion

– No idea when it will finish

Unbounded Priority Inversion

Bounded Priority Inversion
(using Priority Inheritance)

Hardware does matter!

● Cache and TLB misses

● SMI

– System Monster^WManagement Interrupt

● The hardware must also be deterministic

– (Stay tuned, same Bat Channel)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

