


Solving the Linux storage 
scalability bottlenecks

Jens Axboe
Software Engineer                           Kernel Recipes 2015, Oct 2nd 2015



• Devices went from “hundreds of IOPS” to “hundreds of 
thousands of IOPS”

• Increases in core count, and NUMA
• Existing IO stack has a lot of data sharing

● For applications
● And between submission and completion

• Existing heuristics and optimizations centered around 
slower storage

What are the issues?



• The old stack had severe scaling issues
● Even negative scaling
● Wasting lots of CPU cycles

• This also lead to much higher latencies
• But where are the real scaling bottlenecks hidden? 

Observed problems



SCSI driver request_fn driver Bypass driver

File system

BIO layer (struct bio)

Block layer (struct request)

SCSI stack

IO stack



App
CPU A

App
CPU B

App
CPU C

App
CPU D

BIO layer

Block layer

Driver

File system

Seen from the application



App
CPU A

App
CPU B

App
CPU C

App
CPU D

BIO layer

Block layer

Driver

File system

Seen from the application

Hmmmm!



• At this point we may have a suspicion of where the 
bottleneck might be. Let's run a test and see if it backs up 
the theory.

• We use null_blk
● queue_mode=1 completion_nsec=0 irqmode=0

• Fio
● Each thread does pread(2), 4k, randomly, O_DIRECT

• Each added thread alternates between the two available 
NUMA nodes (2 socket system, 32 threads)

Testing the theory





That looks like a lot of lock
contention… Fio reports spending
95% of the time in the kernel, looks
like ~75% of that time is spinning
on locks.

Looking at call graphs, it's a good
mix of queue vs completion, and
queue vs queue (and queue-to-block
vs queue-to-driver).



Driver

App
CPU A

App
CPU B

App
CPU C

App
CPU D

- Requests placed for processing
- Requests retrieved by driver
- Requests completion signaled

== Lots of shared state!

Block layer



• We have good scalability until we reach the block layer
● The shared state is a massive issue

• A bypass mode driver could work around the problem
• We need a real and future proof solution!

Problem areas



• Shares basic name with similar networking functionality, 
but was built from scratch

• Basic idea is to separate shared state
● Between applications
● Between completion and submission

• Improve scaling on non-mq hardware was a criteria
• Provide a full pool of helper functionality

● Implement and debug once
• Become THE queuing model, not “the 3rd one”

Enter block multiqueue



• Started in 2011
• Original design reworked, finalized around 2012
• Merged in 3.13

History



Per-cpu
software
queues
(blk_mq_ctx)

App
CPU A

App
CPU B

App
CPU C

App
CPU D

App
CPU E

App
CPU F

Hardware mapping
queues
(blk_mq_hw_ctx)

Hardware queue Hardware queue Hardware queueHardware and driver



Per-cpu
software
queues
(blk_mq_ctx)

App
CPU A

App
CPU B

Hardware mapping
queues
(blk_mq_hw_ctx)

Hardware queue

Hardware and driver

Completions

Submissions

• Application touches private per-cpu queue
● Software queues
● Submission is now almost fully privatized



Per-cpu
software
queues
(blk_mq_ctx)

App
CPU A

App
CPU B

Hardware mapping
queues
(blk_mq_hw_ctx)

Hardware queue

Hardware and driver

Completions

Submissions

• Software queues map M:N to hardware 
queues

● There are always as many software queues 
as CPUs

● With enough hardware queues, it's a 1:1 
mapping

● Fewer, and we map based on topology of 
the system



Per-cpu
software
queues
(blk_mq_ctx)

App
CPU A

App
CPU B

Hardware mapping
queues
(blk_mq_hw_ctx)

Hardware queue

Hardware and driver

Completions

Submissions

• Hardware queues handle dispatch to 
hardware and completions



• Efficient and fast versions of:
● Tagging
● Timeout handling
● Allocation eliminations
● Local completions 

• Provides intelligent queue ↔ CPU mappings
● Can be used for IRQ mappings as well

• Clean API
● Driver conversions generally remove more code than they 
add

Features



Allocate bio Find free request Map bio to request Insert into software
queue

Signal hardware queue
run?

Hardware queue runs

Submit to hardware

Sleep on free requestFree resources
(bio, mark rq as free)

Complete IO Hardware IRQ event

blk-mq IO flow



Allocate bio Allocate request Map bio to request Insert into queue Signal driver (?)

Driver runsAllocate tag

Submit to hardware

Sleep on resources
Free resources

(request, bio, tag,
Hardware, etc)

Complete IO Hardware IRQ event

Allocate driver
command and SG

list

Block layer IO flow

Pull request off block
layer queue



• Want completions as local as possible
● Even without queue shared state, there's still the request

• Particularly for fewer/single hardware queue design, care 
must be taken to minimize sharing

• If completion queue can place event, we use that
● If not, IPI

Completions



Per-cpu
software
queues
(blk_mq_ctx)

App
CPU A

App
CPU B

Hardware mapping
queues
(blk_mq_hw_ctx)

Hardware queue

Hardware and driver

Completions

Submissions

IRQ in right location?

Yes

No IPI to right CPU

Complete IO

IRQ



• Almost all hardware uses tags to identify IO requests
● Must get a free tag on request issue
● Must return tag to pool on completion

Tagging

Driver Hardware

“This is a request identified by tag=0x13”

“This is the completion event for the
request identified by tag=0x13”



• Must have features:
● Efficient at or near tag exhaustion
● Efficient for shared tag maps

• Blk-mq implements a novel bitmap tag approach
● Software queue hinting (sticky)
● Sparse layout
● Rolling wakeups

Tag support



Sparse tag maps $ cat /sys/block/sda/mq/0/tags 
nr_tags=31, reserved_tags=0, bits_per_word=2
nr_free=31, nr_reserved=0

|-    Cacheline (generally 64b)    -|

Tag values 0-1 Tag values 2-3 Tag values 4-5 Tag values 6-7

App A App B App C App D

• Applications tend to stick to software queues
● Utilize that concept to make them stick to tag cachelines
● Cache last tag in software queue



• We use null_blk
• Fio

● Each thread does pread(2), 4k, randomly, O_DIRECT
• queue_mode=2 completion_nsec=0 irqmode=0 

submit_queues=32
• Each added thread alternates between the two available 

NUMA nodes (2 socket system)

Rerunning the test case







Single queue mode, basically all
system time is spent banging on
the device queue lock. Fio reports
95% of the time spent in the
Kernel. Max completion time is
10x higher than blk-mq mode,
50th percentile is 24usec.

In blk-mq mode, locking time is
drastically reduced and the profile
Is much cleaner. Fio reports 74%
of the time spent in the kernel.
50th percentile is 3 usec.



“But Jens, isn't most storage hardware still 
single queue? What about single queue 

performance on blk-mq?”

— Astute audience member





• SCSI had severe scaling issues
● Per LUN performance limited to ~150K IOPS

• SCSI queuing layered on top of blk-mq
• Initially by Nic Bellinger (Datera), later continued by 

Christoph Hellwig
• Merged in 3.17

● CONFIG_SCSI_MQ_DEFAULT=y
● scsi_mod.use_blk_mq=1

• Helped drive some blk-mq features

Scsi-mq



Graph from Christoph Hellwig



• Backport
• Ran a pilot last half, results were so good it was 

immediately put in production.
• Running in production at Facebook

● TAO, cache
• Biggest win was in latency reductions

● FB workloads not that IOPS intensive
● But still saw sys % wins too

At Facebook







• As of 4.3-rc2
● mtip32xx (micron SSD)
● NVMe
● virtio_blk, xen block driver
● rbd (ceph block)
● loop
● ubi
● SCSI

• All over the map (which is good)

Conversion progress



• An IO scheduler
• Better helpers for IRQ affinity mappings
• IO accounting
• IO polling
• More conversions

● Long term goal remains killing off request_fn

Future work




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

