facebook

Faster 10 through 1o _uring

Jens Axboe
Software Engineer, Facebook Kernel Recipes 2019, Sep 26™ 2019

Rewind one year...

‘' read(2) / write (2)

* pread(2) / pwrite(2)

* preadv (2) / pwritev (2)

* preadv2 (2) / pwritev2 (2)

* fsync(2) / sync data range (2)

Rewind one year... aio/libaio

* 10 setup(2Z2) - 1o submit(2Z2) - 1o getevents (2)
* Supyports read/write, poll, fsync

* Buffered? lol

* O DIRECT always asynchronous? Nope

* Efficiency

* System calls

* Copy

* Ring buffer

* Overall performance lacking today

Facebook

Adoption

* Limited, 0 DIRECT is fairly niche

* Which leads to...

commlit 84cdelf89fefe/0554dalab33be/72¢c9be 7994379

Author: Linus Torvalds <torvalds@linux-:

Date: sun Mar 3 14:23:33 2019 -0800

alo: simpli:

'y — and

)

fix -

Facebook

fget/:

‘put

"oundation.org>

for 1o submit ()

What do we need - tidr

* Support for missing features
* Buffered async IO
* Polled 10
* New features that allow general overhead reduction
* API that doesn’t suck
* Efficient
* Low latency
* High IOPS
* System call limiting
* Could aio be fixed?

l0_uring

* Yes, | know what it sounds like...
* Merged in v5.1-rcl
* First posted January 8™ 2019

e Merged March 8" 2019
* So obviously Linus totally loves it

“"So honestly, the big issue i1is that this i1is *YET*
another likely failed interface that absolutely
nobody will use, and that we will have

absolutely zero visibility into.”

Linus

"It will probably have subtle and nasty bugs, not
just because nobody tests it, but because that's

how asynchronous code works - 1it's hard.”

Linus

"And they are security issues too, and they'd
never show up in the one or two actual users we
might have (because they require that you race
with closing the file descriptor that is used

asynchronously) .”

Linus

10

"Or all the garbage direct-I0 crap. It's shit. I
know the XFS people love it, but it's *still*
shit.”

Linus

11

Hopeless?

“So the fundamental i1ssue 1s that i1t needs to be
sSo good that I don't go "why isn't this *exactly*
the same as all the other failed clever

things we've done'"?”

Linus

13

l0_uring

* Yes, | know what it sounds like...
* Merged in v5.1-rcl
* First posted January 8™ 2019
e Merged March 8" 2019
* So obviously Linus totally loves it
* Deep down somewhere...

What is it

* Fundamentally, ring based communication channel
* Submission Queue, SQ
®* struct 10 urilng sge
* Completion Queue, CQ
* struct 10 uring cge
* All data shared between kernel and application
* Adds critically missing features
* Aim for easy to use, while powerful
* Hard to misuse
* Flexible and extendable!

15

Ring setup

1nt 10 uring setup (u3Z2 nentries, struct 10 uring params *p);

* - returns ring file descriptor
struct 10 urling params ({

us3’ sq_entries;

u3’ cq_entries;

u3Z2 flags;

u32 sq thread cpu;

u32 sq thread idle;

u3’. features;

ul”? resvi|4];

struct 10 sgring offsets sq off;
struct 10 cqring offsets cq off;

o Facebook
};

16

struct 10 sgring offsets {
u32 head;

ul’Z2 tail;

u32 ring mask;

u32 ring entries;

u32 flags;

u3Z2 dropped;

u3Z2 array;

ul’?2 resvl;

uod resv?;

o

Facebook

17

Ring access

#define IORING OFF SQ RING OULL

tdefine IORING OFF CQ RING
#define IORING OFF SQES

Sqaring_ptr

sg-khead =
sg-ktall =
...]

= mmap (0, sg-ring sz, PROT READ

0x8000000ULL
O0x10000000ULL

| PROT WRITE,

1

MAP SHARED | MAP POPULAT:
IORING OFF SQ RING) ;

sg-ring ptr + p-sqg off.head;
sg-ring ptr + p-sqgq off.tail;

Facebook

<, ring fd,

18

Reading and writing rings

* head and tail indices free running

* Integer wraps

* Entry always head/tail masked with ring mask
* App produces SQ ring entries

* Updates tail, kernel consumes at head

* ,array[] holds index into -~sges|[]

* Why not directly indexed?
* Kernel produces CQ ring entries

* Updates tail, app consumes at head

* -»cqes|] iIndexed directly

Facebook

SQEs

struct 1o uring sqge {

- u8 opcode; /* type of operation for this sge */
- u8 flags; /* IOSQE flags */

- ul6 ioprio; /* ioprio for the request */

~ s32 fd; /* file descriptor to do IO on */

- u64d off; /* offset into file */

~ u64 addr; /* pointer to buffer or iovecs */

~ u32 len; /* buffer size or number of iovecs */
union {

u32 misc flags;

o

~_ub4 user data; /* data to be passed back at completion time */

I &

Facebook 20

Filling in a new SQE

struct 10 uring sge *sqge;

unsigned i1ndex, tail;

tall = ring->tail;

read barrier();

/* SQ ring full */

1f (tail + 1 == ring->head)
return FULL;

index = tail & ring->sg ring mask;

sge = &ring->sges[index];
/* f£ill in sge here */

ring—->arrayl[index] = 1ndex;
write barrier();
ring->tail = tail + 1;

write barrier();

Facebook

21

CQEs

struct 1o uring cqge {
~_ub4 user data; /* sge->data submission passed back */
~ s32 res; /* result code for this event */

- u32 flags;
b7

Facebook

22

Finding completed CQE

struct 10 uring cge *cge;

unsigned head, 1ndex;

head = ring->head;
do {
read barrier();
/* cg ring empty */
1f (head == ring—->tail)
break;
index = head & ring->cg ring mask;
cge = &ring->cges|[index];
/* handle done IO */

head++;
} while (1) ;

ring—->head = head;

write_barrier(); el

23

Submitting and reaping IO

1nt 10 uring enter (int ring fd, u32 to submit,

u32 min complete, u3Z flags,

sigset t *sigset);

define IORING ENTER GETEVENTS (1U << 0)
define IORING ENTER SQ WAKEUP (1U << 1)

* Enables submit AND complete in one system call
* Non-blocking
* Requests can be handled inline

Facebook

Supported operations

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

fdefine

IORING OP NOP
IORING OP READV
IORING OP WRITEV
IORING OP FSYNC
IORING OP READ FIXED
IORING OP WRITE FIXED
IORING OP POLL ADD
IORING OP POLL REMOVE
IORING OP SYNC FILE RANGE
IORING OP SENDMSG
IORING OP RECVMSG

IORING OP TIMEOUT

Facebook

=

= O W O J o O b w D = O

25

| thought you said “easy to use”..?

* Only two hard problems in computer science
1) Cache invalidation

2) Memory ordering

3) Off-by-one errors

liburing to the rescue

* Helpers for setup

oooooooo

static int setup ring(struct submitter *s)
{
struct io sg ring *sring = &s—->sg ring;
struct 1o cg ring *cring = &s->cg ring;
struct 1o uring params p;
int ret, £d;

void *ptr;
memset (&p, 0, sizeof (p)):;

fd = io uring setup (depth, &p);
if (fd < 0) {
perror ("1o uring setup");
return 1;

}
s->ring fd = fd;

ptr = mmap (0, p.sq off.array + p.sq entries * sizeof(u32),
PROT READ | PROT WRITE, MAP SHARED | MAP POPULATE, fd,
IORING OFF SQ RING) ;

printf("sq ring ptr = 0x%p\n", ptr);

sring->head = ptr + p.sq off.head;

sring->tail = ptr + p.sqg off.tail;

sring->ring mask = ptr + p.sq off.ring mask;

sring->ring entries = ptr + p.sq off.ring entries;

sring->flags = ptr + p.sq off.flags;

sring->array = ptr + p.sq off.array;

sq ring mask = *sring->ring mask;

s->sges = mmap (0, p.sqg entries * sizeof (struct io uring sge),
PROT READ | PROT WRITE, MAP SHARED | MAP POPULATE, fd,
TORING OFF SQES) ;

printf ("sges ptr = 0x%p\n", s->sges);

ptr = mmap (0, p.cq off.cges + p.cqg entries * sizeof(struct 1o uring cqe),
PROT READ | PROT WRITE, MAP SHARED | MAP POPULATE, fd,
IORING OFF CQ RING) ;

printf ("cqg ring ptr = 0x%p\n", ptr);

cring->head = ptr + p.cq off.head;

cring->tail = ptr + p.cq off.tail;

cring->ring mask = ptr + p.cq off.ring mask;

cring->ring entries = ptr + p.cq off.ring entries;

cring->cges = ptr + p.cq off.cqges;

cq ring mask = *cring->ring mask;

return O;

} Facebook

include <liburing.h>

struct 10 urilng ring;

int ret;

ret = 10 uring queue 1ni

(DEPTH,

Facebook

&§ring,

0)

29

liburing to the rescue

* Helpers for setup
* Helpers for submitting IO

oooooooo

static int prep more 10s(struct submitter *s,

{

struct 1o sg ring *ring = &s->sg ring;
unsigned index, tail, next tail, prepped = 0;
next tail = tail = *ring->tail;

do {

next tail++;

read barrier () ;

1f (next tail == *ring->head)
break;
index = taill & sg ring mask;

init io(s, index);
ring->arrayl[index] = 1ndex;
prepped++;

talil = next tail;

} while (prepped < max ios);

if (*ring->tail != tail) {
/* order tail store with writes to sges above */
write barrier();
*ring->tail = tail;
write barrier();

}

return prepped;

1nt max 10s)

Facebook

31

struct 10 uring sge *sge;

struct 10 uring cge *cge;

struct 10ovec 10Vv;

sge = 1o uring get sge(ring); « previous example to here
10V.10V base = some addr;
1ov.10v len = some len;

10 urlng prep readv(sge, ring->fd, &iov, 1 offset);

10 uring submit (ring);

10 uring walt cge(ring, &cge):;

| read cqge]

10 uring cge seen(ring, cge):;

Facebook

32

liburing to the rescue

* Helpers for setup
* Helpers for submitting IO
* Eliminates need for manual memory barriers
* Mix and match raw and liburing without issue
* liburing package contains kernel header as well
* Use it! Don’t be a hero
* git://git.kernel.dk/liburing

liburing at a glance

io uring queue {init,exit} ()’

io uring get sqge() ;

io uring prep {readv,writev,read fixed,write fixed} ()
io uring prep {recv,send}msg();

io uring prep poll {add,remove} () ;

io uring prep fsync();

io uring submit () ;

io uring submit and wait() ;

io uring {wait,peek} cqge() ;

io uring cqge seen{};

io uring {set,get} data();

Facebook

34

Feature: Drain flag

* Set IOSQE IO DRAIN In sge-flags
* |If set, walits for previous commands to complete
* Eliminates write-»write-write, wait for all writes, sync

35

Feature: Linked commands

* Form arbitrary length chain of commands

* “Do this sqge IFF previous sge succeeds”

* write-»write-write—fsync

* read{fileX,posX,sizeX}-write{fileY,posY,sizeY}
* See liburing examples/link-cp.c

* Set TOSQE IO LINK In sge—-flags

* Dependency chain continues until not set

* Ease of programming, system call reductions

1nt 10 uring register(i1nt ring fd,

de
de
de
de
de
de

fine

fine

fine

fine

fine

fine

u32 nr args):;

IORING REGISTER BUFFERS
IORING UNREGISTER BUFFERS
IORING REGISTER FILES
IORING UNREGISTER FILES
IORING REGISTER EVENTFD
IORING UNREGISTER EVENTFD

Facebook

Registering aux functions

ul3z2 op,

o b W DD B O

volid *arg,

37

Registered buffers

* Takes a struct iovec array as argument

* Length of array nr args

* Eliminates get user pages () In submission path

* ~100 nsec

* Eliminates put pages () In completion path

* Use with TORING OP READ FIXED, IORING OP WRITE FIXED
* Not iovec based

* sqe-buf index points to index of registered array

* sge-addr IS within buffer, sge—len Is length in bytes

Facebook

38

Registered files

* Takes a s32 array as argument

* Length of array as nr args

* Eliminates atomic f£get () for submission
* Eliminates atomic fput () for completion
* Use array Iindex as fd
* Set IOSQE FIXED FILE

* Circular references

* Setup socket, register both ends with io uring
* Pass 10 uring fd through socket

* https://Ilwn.net/Articles/779472/

Facebook 39

Registered eventfd

* Takes a s32 pointer as argument
* Nr_args ignored
* Allows completion notifications

Polled IO

* Not poll(2)
* Are we there yet?
* Trades CPU usage for latency win
* Until a certain point
* Absolutely necessary for low latency devices
* Use IORING SETUP IOPOLL
* Submission the same, reaping is polled
* Can’t be mixed with non-polled IO
* Raw bdev support (eg nvme), files on XFS

Facebook

Polled 1O submission

Use TORING SETUP SQPOLL

* IORING SETUP SQ AFF

Submission now offloaded, reaping is app polled
Independent of IORING SETUP IOPOLL

Busy loops for params—sq thread idle msec when idle

* Sets sg ring-flags |= IORING SQ NEED WAKEUP

Allows splitting submit / complete load onto separate cores

42

Ops/sec

NOP

16,000,000

14,000,000

12,000,000 -

10,000,000

8,000,000

6,000,000

4,000,000 —

2,000,000

MNOP (Single core)

;
a8 16 32
Baich count
Facebook

aio

io_uring

43

0 _uring vs aio p

IOPS

1,800,000

1,600, 000

1,400 000

1,200, 000

1,000,000

800, 000

500, 000

400,000

200,000

eak

Ak random read IOFPS

16

Dueue depth

Facebook

32

128

aio
o uring
o_uring poll

44

Buffered perf

IOPS

1,600,000 —

1,400,000 —

1,200,000 -

1,000,000 —

Randomly reading 16G file, twice

G i a8

Time

Facebook

10

11

12

13

14

15

I0_uring
Sync

45

10_uring vs aio sync

nsec

12000

10000

] urlng

Sync 1O latencies

l0_uring sqthread

Backend

r'dCevuuvK

l0_uring poll

io_uring poll+sq

W clat
W slat

46

Adoption

* Rust, C++ I/O executors

* Ceph (bluestore, new backend)
* libuv

* Postgres

* RocksDB (and MyRocks)

Time [usec)

1600

1400

1200

1000

RocksDB MultiRead() test

RocksDB MultiRead()

1 2 = a8 16 32

Mumber of keys

Facebook

B master
M io_uring

48

Adoption

* Rust, C++ |/O executors

* Ceph (bluestore, new backend)
* libuv

* Postgres

* RocksDB (and MyRocks)

* High performance cases

* TyrDB

Ty r D B 0.1 V s r tyrdb vs mongodt average update response time {5k batch)
MongoDB 4.2 '

Benchmark Test 9/9/2019:

Inserting 200M Keys

1 cpu server process
4 GB ram

4 [yrDB: 38 minutes

50

Results from the wild

* FB internal bigcache project
*1.7M QPS - 2.3M QPS

oooooooo

Results from the wild

’?\' Youmu e

* FB internal bi £ @Condychen

* 1.7M QPS5 = An echo server (single thread) benchmark result:
- the io_uring based, 238K QPS
- the epoll based, 209K QPS

jo_uring wins < Thanks @axboe

PS: Tested with 1000 message size and 50 connections

11:20 PM - Sep 7, 2019 - Twitter Web Client

52

Results from the wild

’\ Youmu v
* FB internal bi &3 @CondyChen

* 1.7M QPS5 = An echo server (single thread) benchmark result:
- the io_uring based, 238K QPS
- the epoll based, 209K QPS

" Building an application for next generation of NVMe

SSDs?

* AIO: 500K IOPS/Core
|0 URING: 1 — 2 million IOPS/Core

oooooooo

Future

* Any system call fully async
* Linked commands with BPF?

* Key/Value store
* Continued efficiency improvements and optimizations

* Continue to iImprove documentation

Resources

* http://kernel.dk/io uring.pdf
* Definitive guide

- git://git.kernel.dk/fio
* 10_uring engine (engines/io uring.c)
*t/io uring.c

* liburing has man pages (for system calls...)
* Regression tests, example use cases

* https://lwn.net/Articles/776703/
* Not fully current (Jan 15™ 2019)

Facebook

http://kernel.dk/io_uring.pdf
https://lwn.net/Articles/776703/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

