
1

Test-driven kernel releases

Guillaume Tucker
gtucker@collabora.com2022-06-01

mailto:gtucker@collabora.com

2

Development & Testing

kernel
development

automated
testing

manual
testing

3

Automated Testing

4

Open Source Philosophy

Single mainline code base

Many contributors

Many use-cases

Application changes are sent upstream

Reduced duplication of efforts

mainline

5

Open Testing Philosophy

Single mainline code base including tests

Many contributors who run tests

Test results sent upstream

Test results summary in each release

Reduced duplication of testing efforts

mainline

6

Hidden Mass of TestingHidden Mass of Testing

Duplicated testing effortsDuplicated testing efforts

No solution for tracking results upstreamNo solution for tracking results upstream

Testing stays hidden as if it was downstreamTesting stays hidden as if it was downstream

7

automated testing

8

syzbot
https://syzkaller.appspot.com/

syscall fuzzing

Automated bisection

Reproducers

Web UI

https://syzkaller.appspot.com/

9

KernelCI
https://linux.kernelci.org/job/

Tailored CI system

Web API

Distributed test labs

Kubernetes

Automated bisection

KCIDB database

https://linux.kernelci.org/job/

10

Red Hat CKI
https://datawarehouse.cki-project.org/

Fedora kernels

Mainline kernels

Stable

LTP, kselftest etc.

KCIDB integration

https://datawarehouse.cki-project.org/

11

regzbot
https://linux-regtracking.leemhuis.info/regzbot/mainline/

All known regressions

Essentially manual submissions

Seamless integration with emails

Weekly report on LKML for mainline

https://linux-regtracking.leemhuis.info/regzbot/mainline/

12

show me the results

13

Focusing on the results

Manual runs

Maintainer scripts

Automated systems

14

Focusing on the results

Manual runs

Maintainer scripts

Automated systems

Results are the

least common

denominator

15

Benefits of results in releases

Valuable for users in general

Canonical way to keep track of code quality

Essentially, avoiding the “works for me” syndrome

16

Challenges

Shift in workflow: results are needed before the release
Similar to how -rc works for stable and mainline

Expect positive results rather than solely look for regressions

Additional step for maintainers

Keeping it simple and not disruptive

Optional

Up to each maintainer to decide which results to include

17

in practice

18

Where to start?
Results reproducible on any hardware

Tests included in the kernel source tree

Plain builds with reference toolchain binaries, Docker images

Builds with sparse enabled make C=1

coccicheck

KUnit

Device tree validation

19

Where to start?
Results reproducible on any hardware

Tests included in the kernel source tree

Plain builds with reference toolchain binaries, Docker images

Builds with sparse enabled make C=1

coccicheck

KUnit

Device tree validation

Documentation: https://docs.kernel.org/

https://docs.kernel.org/

20

RFC 1: Test results in-tree

Similar to linux-next merge logs

Updated for each release (stable, mainline, -next)

Rely on Git history for older results
Results
├── kselftest
│ ├── futex
│ └── lkdtm
├── KUnit
│ └── results.json
└── summary

21

RFC 2: Test-link in commit

22

RFC 3: Git meta-data

Tied to Git history

Separate from commit merge workflow

Similar to Git notes

git results show REVISION

23

Some thoughts

Subsystem-specific results in separate location?
Integration results for mainline / stable / linux-next

Subsystem results could be pulled in alongside code

Follow regular email workflow for adding results
Keep in-tree result summaries in plain text

Extra data can be hosted on separate systems

24

RFC: <your idea here>

How does the concept sound?

Has this been tried or discussed before?

Does it seem worth the effort?

Time for an RFC on LKML to go through some details?

25

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

