
© 2016 VMware Inc. All rights
reserved.

© 2016 VMware Inc. All rights
reserved.

KernelShark 1.0
What’s new, and what’s coming?

Steven Rostedt
9/26/2018

Correction:
● KernelShark 1.0 was suppose to be released in August

● Still not out yet

● Why?
– Prototype was written first to get a good idea about the new design

– The patches were broken up and reviewed in sets

– Lots of updates were done (we want to get it right!)
● Rewrite of designs
● Breaking it up showed better ways to get things done

– Went on tangents
● Oh, we could do this too...
● We are now at: “Just add a TODO comment, and we’ll comeback later”

What is KernelShark?

What is KernelShark?
● It is a graphical interface to trace-cmd

What is KernelShark?
● It is a graphical interface to trace-cmd

● What is trace-cmd?

What is KernelShark?
● It is a graphical interface to trace-cmd

● What is trace-cmd?
– A command line interface to ftrace

What is KernelShark?
● It is a graphical interface to trace-cmd

● What is trace-cmd?
– A command line interface to ftrace

● What is ftrace?

What is KernelShark?
● It is a graphical interface to trace-cmd

● What is trace-cmd?
– A command line interface to ftrace

● What is ftrace?
– The official tracing infrastructure of the Linux kernel

– See any of my other tracing talks

Why update KernelShark?
● Current Version 0.2

– Written in GTK+ 2.0

– Needs an update to GTK+ 3.0

– New version written in Qt (Pronounced “cute”, I am told)

– Was written as an “idle task”
● Worked on it between projects
● A couple of days at a time (may be months between)

– Now have a full time employee (thanks to VMware)

– Can make it much more flexible

Why update KernelShark?
● Current Version 0.2

– Written in GTK+ 2.0

– Needs an update to GTK+ 3.0
● Did not want to rewrite again when GTK+ 4.0 comes out

– New version written in Qt (Pronounced “cute”, I am told)

– Was written as an “idle task”
● Worked on it between projects
● A couple of days at a time (may be months between)

– Now have a full time employee (thanks to VMware)

– Can make it much more flexible

Why was KernelShark created?
– trace-cmd can collect a large amount of data

– Hard to visualize from looking at text

– Real example:
● cyclictest (jitter detecting program) had 250us latency on RT kernel

– On a totally idle machine (only running cyclictest!)
● hwlat reported the latency

– But the HW vendor did not believe it
● Used trace-cmd to find demonstrate the issue
● Showed the HW latency with trace-cmd

Cyclictest

(Recap for those not at Embedded Recipes)

● A tool to measure latency

● Runs a simple loop (in a high priority task)
– Sleep for a specified time

– Get timestamp when wakes up
– Compare the difference

● Favorite application of the Linux RT folks

t1 = time_get()

t2 = time_get()

last_t2 == 0

last_t2 = 0

diff = t1 - last_t2

diff > outer

diff = t2 - t1

diff > inner

outer = diff

inner = diff

time < width

exit loop

Cyclictest

start = gettimeofday()

Sleep 250us

us
er

-s
pa

ce kernel

Put task to sleep

Set interrupt timer for 250us

Timer Interrupt goes off

Wake up Task

Schedule Taskend = gettimeofday()

jitter = (end - start) - 250us

250us

Cyclictest

start = gettimeofday()

Sleep 250us

us
er

-s
pa

ce kernel

Put task to sleep

Set interrupt timer for 250us

Timer Interrupt goes off

Wake up Task

Schedule Taskend = gettimeofday()

jitter = (end - start) - 250us

250us

latency (jitter)

Cyclictest

start = gettimeofday()

Sleep 250us

us
er

-s
pa

ce kernel

Put task to sleep

Set interrupt timer for 250us

Timer Interrupt goes off

Wake up Task

Schedule Taskend = gettimeofday()

jitter = (end - start) - 250us

250us

latency (jitter)

interrupt latency

Cyclictest

start = gettimeofday()

Sleep 250us

us
er

-s
pa

ce kernel

Put task to sleep

Set interrupt timer for 250us

Timer Interrupt goes off

Wake up Task

Schedule Taskend = gettimeofday()

jitter = (end - start) - 250us

250us

latency (jitter)

interrupt latency

w
ak

eu
p

la
te

nc
y

See the hardware latency?

 ksoftirqd/33-216 [033] 55597.719935: timer_cancel: timer=0xffff88403f0ce520
 ksoftirqd/33-216 [033] 55597.719935: timer_expire_entry: timer=0xffff88403f0ce520 function=delayed_work
 ksoftirqd/33-216 [033] 55597.719935: funcgraph_entry: 0.069 us | _raw_spin_lock_irqsave();
 ksoftirqd/33-216 [033] 55597.719936: funcgraph_entry: 0.047 us | _raw_spin_lock();
 ksoftirqd/33-216 [033] 55597.719936: sched_stat_sleep: comm=kworker/33:1 pid=1222 delay=132870067
 ksoftirqd/33-216 [033] 55597.719937: sched_wakeup: kworker/33:1:1222 [120] success=1 CPU:033
 ksoftirqd/33-216 [033] 55597.719937: timer_expire_exit: timer=0xffff88403f0ce520
 ksoftirqd/33-216 [033] 55597.719942: timer_cancel: timer=0xffff88403f0ce620
 ksoftirqd/33-216 [033] 55597.719942: timer_expire_entry: timer=0xffff88403f0ce620 function=delayed_work
 ksoftirqd/33-216 [033] 55597.719943: funcgraph_entry: 0.045 us | _raw_spin_lock_irqsave();
 ksoftirqd/33-216 [033] 55597.719943: timer_expire_exit: timer=0xffff88403f0ce620
 cyclictest-6110 [007] 55597.719955: funcgraph_entry: 0.194 us | _raw_spin_lock();
 cyclictest-6110 [007] 55597.719956: funcgraph_entry: 0.175 us | _raw_spin_lock_irqsave();
 cyclictest-6110 [007] 55597.719957: funcgraph_entry: 0.175 us | _raw_spin_lock_irqsave();
 cyclictest-6113 [010] 55597.719957: funcgraph_entry: 2.436 us | _raw_spin_lock();
 cyclictest-6110 [007] 55597.719957: funcgraph_entry: 0.203 us | _raw_spin_lock();
 cyclictest-6110 [007] 55597.719958: sched_wakeup: cyclictest:6113 [4] success=1 CPU:010
 cyclictest-6110 [007] 55597.719959: funcgraph_entry: 0.048 us | _raw_spin_lock_irqsave();
 cyclictest-6113 [010] 55597.719960: funcgraph_entry: 0.170 us | _raw_spin_lock_irq();
 cyclictest-6113 [010] 55597.719961: funcgraph_entry: 0.045 us | _raw_spin_lock_irqsave();
 cyclictest-6113 [010] 55597.719962: funcgraph_entry: 0.043 us | _raw_spin_lock_irq();
 cyclictest-6110 [007] 55597.719963: print: ffffffff810e5776 hit latency threshold (247 > 200)

How about now?

Better?

I do, here

and here

and here

and here

and here

249us Latency!

SCHED_DEADLINE

KernelShark 0.2 (GTK version) vs 1.0 (Qt version)
● 1.0 is MUCH faster!

– New algorithm to fill in pixels
● With 1,000,000,000(n) events in 1000(m) pixels width window

– 0.2 Would do linear search to find next event to draw the next line
● 1,000,000 queries per vertical line drawn - O((n/m))

– 1.0 does a binary search for the event in the next pixel
● 30 queries per vertical line draw - O(log2n)
● Switches to linear search when log2n >= n/m

● ~10,000 events per 1000 pixels

KernelShark 1.0 (Qt version)
● Written by Yordan Karadzhov

– Although I’m still the maintainer (reviewer of the code)

● Rewritten from scratch
– I let him play

● The requirement was to have all features of KernelShark 0.2
● Then I revisited to help him
● Break it up into a patch series

– Why it’s late :-p

– New Look!

– New design!
● Becoming a library (more on that later)

● Much faster than KernelShark 0.2 (must keep stressing this!)

KernelShark 0.2

KernelShark 1.0

Headers
KernelShark 0.2

KernelShark 1.0

KernelShark 0.2 Markers (“Marker A”)

KernelShark 0.2 Markers (“Cursor”)

KernelShark 0.2 Markers (“Marker B”)

KernelShark 1.0 Markers (“Marker A”)

KernelShark 1.0 Markers (“Marker B”)

KernelShark 0.2 Zooming

KernelShark 0.2 Zooming

KernelShark 1.0 Zooming

KernelShark 1.0 Zooming

Selecting Tasks

KernelShark 0.2 Wake-up Latency

KernelShark 1.0 Wake-up Latency

KernelShark 1.0 Sessions

KernelShark 0.2 Zooming

KernelShark 0.2 Zooming

KernelShark 1.0 Zooming

KernelShark 1.0 Zooming

What’s next after 1.0?
● libkshark.so

– The guts of KernelShark is being “modularized”

– The KernelShark application is just a “shell”

– Any tool will be able to use it

– Also will be used by Python applications (libkshark.py)

● Will read multiple formats
– Not just trace.dat

– perf.data

– Common Trace Format (CTF)

● Plugins
– C, C++, Python

What’s next after 1.0?

KernelShark Apache Python Script

libkshark engine

trace.dat perf.data CTF

What’s next after 1.0?

C C++ Fortran

GCC Engine

x86 ARM PowerPC

What’s next after 1.0?
● More than one view

– Plot view (what it currently is)

– Graphs

– Flame graphs (see Brendan Gregg’s presentations)

● Will show multiple machines
– Show interactions between hosts and multiple guests

Questions?

We have time!

DEMO!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

