

Linux Kernel
Development

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/kernel-development

 47,000 files
18,900,000 lines

Kernel release 3.16.0

3,483 developers
 439 companies

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

8,700 lines added
3,880 lines removed
1,900 lines modified

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

8,700 lines added
3,880 lines removed
1,900 lines modified

Every day

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

7.6 changes per hour

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

9.5 changes per hour

3.16 release

2.6.20 to 2.6.24-rc8

How we stay sane

2.6.20 to 2.6.24-rc8

Time based releases
Incremental changes

New release every
2½ months

Kernel releases 3.10.0 – 3.14.0

“Longterm kernels”

One picked per year
Maintained for two years

3.10 3.14

2.6.20 to 2.6.24-rc8

commit ecf85e481a716cfe07406439fdc7ba9526bbfaeb
Author: Robert Jarzmik <robert.jarzmik@free.fr>
AuthorDate: Tue Apr 21 20:33:10 2009 -0700
Commit: Greg Kroah-Hartman <gregkh@suse.de>
CommitDate: Thu Apr 23 14:15:31 2009 -0700

 USB: otg: Fix bug on remove path without transceiver

 In the case where a gadget driver is removed while no
 transceiver was found at probe time, a bug in
 otg_put_transceiver() will trigger.

 Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
 Acked-by: David Brownell <dbrownell@users.sourceforge.net>
 Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

--- a/drivers/usb/otg/otg.c
+++ b/drivers/usb/otg/otg.c
@@ -43,7 +43,8 @@ EXPORT_SYMBOL(otg_get_transceiver);
 void otg_put_transceiver(struct otg_transceiver *x)
 {
- put_device(x->dev);
+ if (x)
+ put_device(x->dev);
 }

Developer's Certificate of Origin

(a) I created this change; or

(b) Based this on a previous work with a
 compatible license; or

(c) Provided to me by (a), (b), or (c) and not
 modified

(d) This contribution is public.

Top developers by quantity
H. Hartley Sweeten 1459
Sachin Kamat 1288
Jingoo Han 1167
Laurent Pinchart 820
Alex Deucher 642
Daniel Vetter 633
Lars-Peter Clausen 566
Mark Brown 537
Jes Sorensen 530
Ville Syrjälä 527

Kernel releases 3.11.0 – 3.16.0

Top Signed-off-by:
Greg Kroah-Hartman 9250
David S. Miller 5882
Mark Brown 3449
Linus Torvalds 3124
Andrew Morton 2963
Daniel Vetter 2649
Mauro Carvalho Chehab 2176
John Linville 1707
Rafael Wysocki 1606
H Hartley Sweeten 1459

Kernel releases 3.11.0 – 3.16.0

Who is funding this work?
1. Intel 10.6%
2. “Amateurs” 10.1%
3. Red Hat 8.4%
4. Linaro 6.3%
5. Unknown Individuals 5.6%
6. Samsung 4.5%
7. IBM 3.3%
8. SuSE 3.0%
9. Texas Instruments 2.5%
10. Consultants 2.5%

Kernel releases 3.11.0 – 3.16.0

Who is funding this work?
11. Google 2.0%
12. Vision Engraving 2.0%
13. Renesas 2.0%
14. Freescale 1.7%
15. Free Electrons 1.6%
16. FOSS OPFW 1.4%
17. Oracle 1.2%
18. AMD 1.2%
19. Nvidia 1.2%
20. Huawei 1.2%

Kernel releases 3.10.0 – 3.14.0

“Working upstream
saves time and money”

2.6.20 to 2.6.24-rc8

Dan Frye – VP Open Systems, IBM
Dirk Hohndel – Chief Technologist, Intel

Getting involved

2.6.20 to 2.6.24-rc8

Run the kernel.org release on your machine

Getting involved

2.6.20 to 2.6.24-rc8

 2.6.20 to 2.6.24-rc8

Documentation/HOWTO

Documentation/development-process

Getting involved

 2.6.20 to 2.6.24-rc8

Getting involved

kernelnewbies.org

http://www.kernelnewbies.org/

 2.6.20 to 2.6.24-rc8

Getting involved
Google “write your first kernel patch”

 2.6.20 to 2.6.24-rc8

Getting involved
kernelnewbies.org/KernelJanitors/Todo

 2.6.20 to 2.6.24-rc8

Getting involved

http://eudyptula-challenge.org/

Eudyptula Challenge
(little penguin)

 2.6.20 to 2.6.24-rc8

Linux Driver Project

drivers/staging/*/TODO

Getting involved

github.com/gregkh/kernel-development

Linux Kernel
Development

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/kernel-development

I'm going to discuss the how fast the kernel is
moving, how we do it all, and how you can
get involved.

 47,000 files
18,900,000 lines

Kernel release 3.16.0

This was for the 3.16 kernel release, which
happened August 3, 2014.

3,483 developers
 439 companies

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

This makes the Linux kernel the largest
contributed body of software out there that
we know of.

This is just the number of companies that we
know about, there are more that we do not,
and as the responses to our inquiries come
in, this number will go up.

Have surpassed 400 companies for 2 years
now.

8,700 lines added
3,880 lines removed
1,900 lines modified

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

8,700 lines added
3,880 lines removed
1,900 lines modified

Every day

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

7.6 changes per hour

Kernel releases 3.11.0 – 3.16.0
September 2013 – August 2014

This is 24 hours a day, 7 days a week, for a full
year.

We went this fast the year before this as well,
this is an amazing rate of change.

Interesting note, all of these changes are all
through the whole kernel.

For example, the core kernel is only 5% of the
code, and 5% of the change was to the core
kernel. Drivers are 55%, and 55% was done
to them, it's completely proportional all
across the whole kernel.

9.5 changes per hour

3.16 release

2.6.20 to 2.6.24-rc8

This past 3.16 release was the fastest we have
ever created. That number shows just how
well the Linux kernel development model is
working. We are growing in developers and
in how fast we are developing overall.

Now this is just the patches we accepted, not
all of the patches that have been submitted,
lots of patches are rejected, as anyone who
has ever tried to submit a patch can attest
to.

How we stay sane

2.6.20 to 2.6.24-rc8

Time based releases
Incremental changes

New release every
2½ months

Kernel releases 3.10.0 – 3.14.0

67 days to be exact, very regular experience.

How a kernel is developed.
Linus releases a stable kernel
- 2 week merge window from subsystem
maintainers
- rc1 is released
- bugfixes only now
- 2 weeks later, rc2
- bugfixes and regressions
- 2 weeks later,rc3
And so on until all major bugfixes and
regressions are resolved and then the cycle
starts over again.

Greg takes the stable releases from Linus,
and does stable releases with them,
applying only fixes that are already in
Linus's tree.

Requiring fixes to be in Linus's tree first
ensures that there is no divergence in the
development model.

After Linus releases a new stable release,
the old stable series is dropped.

With the exception of “longterm” stable
releases, those are special, the stick around
for much longer...

“Longterm kernels”

One picked per year
Maintained for two years

3.10 3.14

2.6.20 to 2.6.24-rc8

I pick one kernel release per year to maintain for
longer than one release cycle. This kernel I will
maintain for at least 2 years.

This means there are 2 longterm kernels being
maintained at the same time.

3.4 and 3.10 are the longterm kernel releases I am
maintaining.

3.4 will stop being maintained in October.

Ben Hutchings is maintaining the 3.2 kernel as a
longterm kernel for the Debian project.

The LTSI project is based on the longterm kernels.

Like mentioned before, we have almost 3000
individual contributors. They all create a
patch, a single change to the Linux kernel.
This change could be something small, like a
spelling correction, or something larger, like
a whole new driver.

Every patch that is created only does one
thing, and it can not break the build,
complex changes to the kernel get broken
up into smaller pieces.

The developers send their patch to the
maintainer of the file(s) that they have
modified.

We have about 700 different
driver/file/subsystem maintainers

commit ecf85e481a716cfe07406439fdc7ba9526bbfaeb
Author: Robert Jarzmik <robert.jarzmik@free.fr>
AuthorDate: Tue Apr 21 20:33:10 2009 -0700
Commit: Greg Kroah-Hartman <gregkh@suse.de>
CommitDate: Thu Apr 23 14:15:31 2009 -0700

 USB: otg: Fix bug on remove path without transceiver

 In the case where a gadget driver is removed while no
 transceiver was found at probe time, a bug in
 otg_put_transceiver() will trigger.

 Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
 Acked-by: David Brownell <dbrownell@users.sourceforge.net>
 Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

--- a/drivers/usb/otg/otg.c
+++ b/drivers/usb/otg/otg.c
@@ -43,7 +43,8 @@ EXPORT_SYMBOL(otg_get_transceiver);
 void otg_put_transceiver(struct otg_transceiver *x)
 {
- put_device(x->dev);
+ if (x)
+ put_device(x->dev);
 }

This is an example of a patch.

It came from Robert, was acked by David, the
maintainer at the time of the usb on-the-go subsystem,
and then signed off by by me before it was commited to
the kernel tree.

The change did one thing, it checked the value of the
pointer before it was dereferenced, fixing a bug that
would have crashed the kernel if it had been hit.

This is also a “blame” trail, showing who changed each
line in the kernel, and who agreed with that change.

If a problem is found, these are the developers that you
can ask about it.

Because of this, every line in the Linux kernel can be
traced back to at least two developers who are
responsible for it.

This is better than any other body of code.

Developer's Certificate of Origin

(a) I created this change; or

(b) Based this on a previous work with a
 compatible license; or

(c) Provided to me by (a), (b), or (c) and not
 modified

(d) This contribution is public.

This is what “Signed-off-by:” means.
All contributions to the Linux kernel have to
agree to this, and every single patch has at
least one signed-off-by line, usually all have
at least two.

This is also a “blame” trail, showing who
changed each line in the kernel, and who
agreed with that change.

If a problem is found, this is the developers
that you can ask about it.

Because of this, every line in the Linux
kernel can be traced back to at least two
developers who are responsible for it.
This is better than any other body of code.

After reviewing the code, and adding their
own signed-off-by to the patch, the
file/driver maintainer sends the patch to the
subsystem maintainer responsible for that
portion of the kernel.

We have around 150 subsystem maintainers

Linux-next gets created every night from all
of the different subsystem trees and build
tested on a wide range of different
platforms.

We have about 150 different trees in the
linux-next release.

Andrew Morton picks up patches that cross
subsystems, or are missed by others, and
releases his -mm kernels every few weeks.
This includes the linux-next release at that
time.

Every 3 months, when the merge window
opens up, everything gets sent to Linus from
the subsystem maintainers and Andrew
Morton.

The merge window is 2 weeks long, and
thousands of patches get merged in that
short time.

All of the patches merged to Linus should
have been in the linux-next release, but that
isn't always the case for various reasons.

Linux-next can not just be sent to Linus as
there are things in there that sometimes are
not good enough to be merged just yet, it is
up to the individual subsystem maintainer to
decide what to merge.

Top developers by quantity
H. Hartley Sweeten 1459
Sachin Kamat 1288
Jingoo Han 1167
Laurent Pinchart 820
Alex Deucher 642
Daniel Vetter 633
Lars-Peter Clausen 566
Mark Brown 537
Jes Sorensen 530
Ville Syrjälä 527

Kernel releases 3.11.0 – 3.16.0

Hartley – comedi
Sachin – exynos ARM platform
Jingoo – backlight / framebuffer
Laurent – video camera drivers
Alex – remote block driver
Daniel – Intel graphics driver
Lars – sound
Mark – embedded sound
Jes – a wireless driver
Ville – Intel graphics driver

Top Signed-off-by:
Greg Kroah-Hartman 9250
David S. Miller 5882
Mark Brown 3449
Linus Torvalds 3124
Andrew Morton 2963
Daniel Vetter 2649
Mauro Carvalho Chehab 2176
John Linville 1707
Rafael Wysocki 1606
H Hartley Sweeten 1459

Kernel releases 3.11.0 – 3.16.0

Greg – driver core, usb, staging
David – networking
Mark – embedded sound
Linus – everything
Andrew – everything
Daniel – Intel graphics
Mauro – v4l
John – wireless networking
Rafael – ACPI / power management
Hartley – comedi data acquisition

Who is funding this work?
1. Intel 10.6%
2. “Amateurs” 10.1%
3. Red Hat 8.4%
4. Linaro 6.3%
5. Unknown Individuals 5.6%
6. Samsung 4.5%
7. IBM 3.3%
8. SuSE 3.0%
9. Texas Instruments 2.5%
10. Consultants 2.5%

Kernel releases 3.11.0 – 3.16.0

So you can view this as either 17% is done by
non-affiliated people, or 83% is done by
companies.

Now to be fair, if you show any skill in kernel
development you are instantly hired.

Why this all matters: If your company relies
on Linux, and it depends on the future of
Linux supporting your needs, then you
either trust these other companies are
developing Linux in ways that will benefit
you, or you need to get involved to make
sure Linux works properly for your
workloads and needs.

Who is funding this work?
11. Google 2.0%
12. Vision Engraving 2.0%
13. Renesas 2.0%
14. Freescale 1.7%
15. Free Electrons 1.6%
16. FOSS OPFW 1.4%
17. Oracle 1.2%
18. AMD 1.2%
19. Nvidia 1.2%
20. Huawei 1.2%

Kernel releases 3.10.0 – 3.14.0

Vision Engraving (Hartley 1450 patches)

FOSS Outreach Program for Women 1000
20 women interns / students

Amazon 3 patches total.
That sucks.

“Working upstream
saves time and money”

2.6.20 to 2.6.24-rc8

Dan Frye – VP Open Systems, IBM
Dirk Hohndel – Chief Technologist, Intel

Getting involved

2.6.20 to 2.6.24-rc8

10,900 lines added
 5,500 lines removed
 2,200 lines modified

per day 2008 - 2009

Run the kernel.org release on your machine

Getting involved

2.6.20 to 2.6.24-rc8

10,900 lines added
 5,500 lines removed
 2,200 lines modified

per day 2008 - 2009

This book tells you how to build and install a kernel
on your machine.

Free online

 2.6.20 to 2.6.24-rc8

Documentation/HOWTO

Documentation/development-process

Getting involved

These documents in the kernel source
directory are the best place to start if you
want to understand how the development
process works, and how to get involved.

The HOWTO file has links to almost
everything else you ever wanted..

 2.6.20 to 2.6.24-rc8

Getting involved

kernelnewbies.org

http://www.kernelnewbies.org

 2.6.20 to 2.6.24-rc8

Getting involved
Google “write your first kernel patch”

This is a video of a talk I gave at FOSDEM,
going through the steps, showing exactly
how to create, build, and send a kernel
patch.

 2.6.20 to 2.6.24-rc8

Getting involved
kernelnewbies.org/KernelJanitors/Todo

So you know how to create a patch, but
what should you do? The kernel janitors has
a great list of tasks to start with in cleaning
up the kernel and making easy patches to be
accepted.

 2.6.20 to 2.6.24-rc8

Getting involved

http://eudyptula-challenge.org/

Eudyptula Challenge
(little penguin)

Google “Linux kernel challenge” to find the
site, if you can't remember Eudyptula.

It is a series of programming challenges, all
run through email that starts out with a
“Hello World” kernel module, and gets more
complex from there. Over 4000 people are
currently taking the challenge, and is a lot
of fun if you don't know where to start out.

You need knowledge of C, but that's about it.

 2.6.20 to 2.6.24-rc8

Linux Driver Project

drivers/staging/*/TODO

Getting involved

The staging tree also needs a lot of help, here
are lists of things to do in the kernel for the
drivers to be able to move out of the staging
area.

Please always work off of the linux-next tree if
you want to do these tasks, as sometimes
they are already done by others by the time
you see them in Linus's tree.

github.com/gregkh/kernel-development

Obligatory Penguin Picture

