
kGraft
Live patching of the Linux kernel

Jiří Kosina, Petr Mládek, Vojtěch Pavlík, Jiri Slaby

SUSE Labs

September 25th 2014
Paris, France

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 1 / 23



Why Live Patching?

1000 machines & severe security problem
Needs fixing now!

Rebooting the machines
Is not a quick way to fix an issue
Has a risk of not coming up

Live patching
Allows quick response
Leaves an actual update to a scheduled downtime window

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 2 / 23



Where is Live Patching Useful?

Common tiers of change management
1 Incident response – we are exploited
2 Emergency change – we could be exploited (we are vulnerable)
3 Scheduled change – time is not critical, we are safe

Live patching fits in with 1 and 2

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 3 / 23



Presentation Outline

1 KGRAFT

2 KGRAFT Internals

3 Live Demo

4 Conclusion

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 4 / 23



Section 1

KGRAFT

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 5 / 23



KGRAFT

Research project
Live patching technology
Developed by SUSE Labs
Specifically for the Linux kernel
Based on modern Linux technologies

INT3/IPI-NMI self-modifying code
Lazy update mechanism
fentry-based NOP space allocation
Standard kernel module loading/linking mechanisms

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 6 / 23



Advantages of KGRAFT

Does not require stopping the kernel
Ever!
Not even for short time periods
Unlike competing technologies

Allows code review on KGRAFT patch sources
Patches can be built from C source directly
No need for object code manipulation

Only an alternative: object code based automated patch generation

kGraft is lean
Small amount of code
Leveraging other Linux technologies
No complex instruction en/decoders or such

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 7 / 23



How does KGRAFT work?

A kGraft patch is a .ko kernel module
The .ko is inserted into the kernel using insmod

All linking (incl. the fix) is done by kernel
KGRAFT replaces whole functions in the kernel

Even while those functions may be executed

An updated KGRAFT module can replace an existing patch

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 8 / 23



Limitations

kGraft is designed for fixing critical bugs
Primarily for simple changes

Changes in kernel data structure layout require special care
Depending on the size of the change, reboot may be needed
Same as with other live patching techniques

KGRAFT depends on a stable build environment
Having history of built kernels
Best suited for

Linux distributions
Their customers
Anyone who builds their own kernels

Not good for 3rd party support

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 9 / 23



Section 2

KGRAFT Internals

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 10 / 23



KGRAFT and fentry

KGRAFT needs some space at the start of a function
To insert a jump to a patched function

The space can be provided by GCC profiling
-pg -mfentry
KGRAFT uses this

fentry call instructions
Patched out at boot
Replaced with 5-byte NOPs

kernel_func

CALL fentry

kernel_func

5-byte NOP

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 11 / 23



Using 5-byte NOPs Space

KGRAFT uses the ftrace infrastructure to perform patching
INT3 handler is installed with a JMP to the destination address

1 First byte of NOP is replaced by INT3
2 Remaining bytes are replaced by address
3 First byte is replaced by JMP
4 NMI IPIs are used to flush instruction decoders on other CPUs

kernel_func

5-byte NOP

kernel_func

INT3 | xxxx

INT3 handler

JMP addr

kernel_func

INT3 | addr

kernel_func

JMP addr

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 12 / 23



Patching a Function

Patching during runtime, no stop_kernel();
Callers are never patched

Rather, callee’s NOPs are replaced by a JMP to the new function
JMP remains forever

But this takes care of function pointers, including in structures
Like indirect calls (handler->function())

Does not require saving any old data in case we want to un-patch

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 13 / 23



Patching a Function in Pictures

kernel_func

buggy_func();

buggy_func

JMP fixed

fixed_func

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 14 / 23



Issue: Non-consistency

What happens when
Replaced function changes semantics and subsequent calls rely
on each other?
It is called recursively?

kernel_func

buggy_func();

buggy_func();

BOOM!

buggy_func

fixed_func

KGRAFT patch comes in

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 15 / 23



Cure: RCU-like Replacement

We need to provide a consistent “world-view” to each thread
User processes
Kernel processes
Interrupts

Solution: “reality check” trampoline
Per-thread flag set on each kernel entry/exit

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 16 / 23



RCU-like Replacement

kernel_func

heavy work

buggy_func();

reality_check

which universe
are you

coming from?

buggy_func

fixed_func

Userspace

Kernelspace

Welcome to
the new universe!

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 17 / 23



Lazy Replacement

All processes must wake up or execute a syscall
Sometimes this requires a signal to be sent (like for getty’s)

Once all processes have the "new universe" flag set
Patching is complete
Trampolines can be removed

Files to check
/proc/<pid>/kgr_in_progress
/sys/kernel/kgraft/kgr_in_progress

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 18 / 23



Lazy Replacement

kernel_func

heavy work

buggy_func();

buggy_func

fixed_func

Userspace

Kernelspace

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 19 / 23



Get It

Upstreaming
KGRAFT was submitted and reviewed upstream

There are other groups working on competing technologies
KPATCH, KSPLICE, criu-based aproach, . . .
SUSE will work together with them
Expectations: common standard kernel live patching

Publishing
Part of SLE12 kernel tree
GIT repository upstream

http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/
kgraft.git

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 20 / 23

http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/kgraft.git
http://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/kgraft.git


Maintenance

KGRAFT patch is an RPM package
Once installed, always protected

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 21 / 23



Live Demo

Kernel with a security vulnerability
Exploit program
kGraft patch

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 22 / 23



Conclusion

SUSE provides
Demanded live Linux kernel patching
Dubbed KGRAFT

Jiri Slaby (SUSE Labs) kGraft September 25th 2014, Paris 23 / 23


	kGraft
	kGraft Internals
	Live Demo
	Conclusion

