
NDIV: a low overhead network traffic diverter

2014/09/26

Willy Tarreau <willy@haproxy.com>

HAProxy Technologies
ALOHA R&D

http://www.haproxy.com/

Initial idea

Requirements appeared around 2000 :

Use web-like traffic to test firewalls, proxies, load balancers, anti-viruses

Few available products, and with extremely poor performance

⇒ Let's build the missing parts !

First attempt :

Oct 2000 : birth of the "inject" client, for use with thttpd or Apache

bash-4.2$ /data/git/public/inject/injectl4 -u 10 -G 127.0.0.1:8000/
 hits ^hits hits/s ^h/s bytes kB/s last errs tout htime sdht ptime
 8256 8256 8231 8231 1205376 1201 1201 0 0 7.2 0.7 7.2
 16336 8080 8163 8096 2385056 1191 1182 0 0 7.1 0.5 7.1
 24536 8200 8170 8183 3582256 1192 1194 0 0 7.0 0.2 7.0
^C

Nov 2000 : birth of the "sizesrv" server by Benoit Dolez, for use with inject

GET /3k&t=100ms HTTP/1.0
HTTP/1.0 200 OK
Content-length: 3072

2003 : Netfilter benchmark : inject & sizesrv do not scale enough.

⇒ If only I could run a single dumb server and have all machines for inject !

First Observation

Shortcomings :

Problem is to support very short requests at high rate

Connection processing overhead is the first cause

Packet processing overhead is another one

⇒ Can we run stateless and avoid the connection overhead ?

Acceptable tradeoffs :

Only support short connections (simpler state machine)

No security considerations (we're benchmarking)

Undefined behaviour for non-HTTP traffic is acceptable

But must comply with TCP specs (must work with any client)

First attempt at a design

Where to store the state

TCP flags ? ⇒ OK

TCP sequence numbers ? ⇒ OK

TCP timestamps ⇒ would be nice but not acceptable

First attempt at a design failed, so back to continuing improving my tools :-(

Sept 2004 : "inject" becomes multi-process

May 2006 : "httpterm" replaces and improves sizesrv

⇒ Still missing support for line rate on very small objects

New ideas and hopes in 2013 at home

Working at improving network performance on Armada370/XP

Noticed that Marvell's Neta Ethernet controller is line-rate capable

CPU is not *that* fast and full TCP stack + httpterm are much slower

Plat'home offers me an Armada XP-based OpenBlocks AX3/4 :

⇒ Already dreaming about line-rate sniffing :-)
... But failed to implement something working outside of /dev/shm :-(
⇒ Starting to imagine a simple framework to call external tasks : NDIV

New ideas and hopes in 2013 at work

Testing other packet processing frameworks :

netmap - http://info.iet.unipi.it/~luigi/netmap/

PF_RING™ - http://www.ntop.org/products/pf_ring/

Intel® DPDK - http://dpdk.org/

Observations :

all of them are pretty fast on packet processing / forwarding

all of them are designed for fast data planes in userland

netif_rx() is not an option for fast delivery to local stack

⇒ Need for a completely different design for fast local delivery

Requirements for a new packet processing framework

Minimum requirements for the framework :
inspect received packets with low overhead

pass received packets to local stack with almost no overhead

drop received packets at almost not cost

respond with a crafted packet as fast as possible

come with a very simple example application to test it

⇒ Same requirements as for the stateless HTTP server, let's try again first !

Revisiting the stateless HTTP server

A very quick reminder about TCP's basic principles (see RFC793) :

two opposite, independant, unidirectional streams

packets carry flags to indicate local status (SYN, FIN, RST, ...)

packets have a sequence number indicating their position in the stream

sequence numbers reflect transmitted byte count

SYN and FIN flags are seen only once per direction and count as one byte.

Initial sequence number is chosen by each party when sending the SYN flag

ACK field indicates next expected sequence number

ACK (almost) any data or SYN/FIN you receive

retransmit anything not ACKed after a timeout

Revisiting the stateless HTTP server

A typical, complete short HTTP connection uses 7 packets

Revisiting the stateless HTTP server

A typical, complete short HTTP connection uses 7 packets

Revisiting the stateless HTTP server

A typical, complete short HTTP connection uses 7 packets

Revisiting the stateless HTTP server

A typical, complete short HTTP connection uses 7 packets

Revisiting the stateless HTTP server

An optimized HTTP connection may be down to 5 packets

⇒ Even the shortest connections are compatible with this principle

Revisiting the stateless HTTP server

With HTTP keep-alive, the request-response loop repeats as long as needed

Revisiting the stateless HTTP server

Conclusion : the design is very simple :

drop anything without data nor SYN nor FIN

respond to SYN with SYN-ACK and a carefully picked sequence number

arrange initial sequence number so that we can recognize them in incoming ACKs

always send SEQ = last ACK when present

always send ACK = last SEQ + received_data + FIN + SYN

send a response when receiving a request

set the FIN flag on the last response

never ACK anything without sending DATA, SYN or FIN
⇒ all lost packets are dealt with by the client

could even support TCP Fast Open with minor changes !

Revisiting the stateless HTTP server

We need 4 states :

0 : REQ : waiting for the request, just after the SYN-ACK is sent

1 : ACK : a client's FIN was received, waiting for ACK of our FIN

2 : CLO : our data were ACKed but not the FIN yet (rare)

3 : FIN : our FIN was sent and ACKed

⇒ These states can be encoded in our sequence numbers echoed by the client

Note: the original implementation (slhttpd) supports 16 states to send large responses, but it was unreliable since a lost
client's ACK will not be retransmitted.

Revisiting the stateless HTTP server

We use a few tricks :

Always send data in multiples of 4 bytes (leaves 2 bits for state)

use FIN and X-Pad header to adjust the state

REQ → REQ transition is used for HTTP keep-alive

ACK must equal REQ + 1 (as our response FIN counts for 1)

FIN must equal CLO + 1 (same reason)

Revisiting the stateless HTTP server

Two proofs of concepts were made :

NFQUEUE (userland) : fast and portable development :

~33.000 conn/s on the AX3

~105.000 conn/s on a Core2 at 3 GHz

kernel-only dummy interface (Tx path) :

~42.000 conn/s on the AX3

~175.000 conn/s on the Core2

Both support GET/HEAD, send requested response size and parse the Connection header

This is already twice the speed previously achieved using httpterm

⇒ time to bring the old NDIV hacks back to the whiteboard

New ideas for the NDIV framework

Based on what the HTTP server and sniffer requirements, and what we saw in other designs :

CPU L1 caches are small, limit copies to absolute minimum

Work in kernel space to gain direct access to data without copying into descriptors

Most CPUs have branch prediction units, better use callbacks than queues

Pass performance-critical information in registers

Modifying network drivers is not that hard (learned from netmap)

Adapt to best, not to worst : focus on ideal NICs and make the driver fill the gap

Pass useful L2/L3/L4 offsets to the application to save it from parsing packets

Make it easy for the application to build packets and let the driver/NIC finish the job

Pass pre-allocated Tx buffers to the application in case it needs to respond

Support an rx_done() function to flush pending work

Run under NAPI to ensure we don't interrupt anyone

Placing the NDIV framework in a driver

Basically one function for the Rx path and another one for the Tx path

Design of the NDIV framework

Everything fits in a single ".h" file of ~250 lines (1/3 doc & comments).

struct ndiv {
 struct net_device *dev;
 u32 (*handle_rx)(struct ndiv *ndiv, u8 *l3, u32 flags_l3len, u32 vlan_proto, u8 *l2, u8 *out);
 u32 (*handle_tx)(struct ndiv *ndiv, struct sk_buff *skb);
 void (*rx_done)(struct ndiv *ndiv);
};

A few hints are used.

attach: the pointer to the ndiv struct is stored in dev->ax25_ptr

checking this pointer is enough to know if ndiv is attached

use a lot of composite input/output values to reduce register pressure

make most commonly used values easily accessible (eg: length on 16 lower bits)

adjust number of packets really reported to NAPI on Rx

NDIV callbacks

handle_rx() is called inside the poll() loop under NAPI

handle_rx() arguments :

direct pointers to L2 and L3 (allows holes used to align packets)

flags_l3len : high 16 bits : IPv4/IPv6/other, extensions, TCP/UDP/other, L3/L4 csum validity

flags_l3len : low 16 bits : L3 len

vlan_proto : vlan ID (16 bits) + L3 protocol (16 bits)

NDIV: callbacks

handle_rx() output : 32 bits

Action (2 bits) : SKIP / PASS / DROP

Output packet length (for XMIT on DROP or changing on PASS)

IP/TCP/UDP checksumming needed (yes/no)

L4 offset (for checksum)

VLAN tag present (yes/no)

IPv4/IPv6/Other

NDIV: callbacks

rx_done()

Called once after the Rx loop if any Rx done

Used to wake up user-space, to flush stats or buffers (eg: sniffer)

handle_tx() takes an SKB from the local stack

Only three actions for now : SKIP / PASS / DROP

Nothing planned to modify the packet yet

API could be changed to return skb or NULL

NDIV implementation

NDIV was first implemented in mvneta (Armada XP/370)

Basic work, including very basic XMIT : ~1 day

Implement checksum/VLAN/IPv6 checks : another day

DMA API optimizations (implement a single DMA barrier to avoid dma_unmap())

A per-queue Tx descriptor pool was implemented

one Tx queue must be locked when doing XMIT.

reduce lock cost by unlocking after non-Tx packets

⇒ both OpenBlocks and Mirabox support mirroring 1.488 Mpps (line rate)

Porting SLHTTP to NDIV

The stateless server was ported to NDIV and run on the AX3

Simple port from the dummy interface code : ~1 day, ~600 loc

Only attaches to a destination port range in TCP over IPv4

No measurable performance impact for communications to/from TCP stack

Achieves 340.000 connections per second (test limited by request size) :

SYN: 8 + 64 + 12 bytes = 84 bytes

REQ: 8 + 14 + 166 + 12 bytes = 200 bytes

RST: 8 + 64 + 12 bytes = 84 bytes

340k/s * 368 bytes
= 1 Gbps

and 663.000 requests/s in keep-alive using ab

Limiting factor is always the request traffic saturating the link!

⇒ Achives line rate for all sizes on a single CPU core

NDIV next steps

This design is still experimental

HAPTech ported it to Intel's ixgbe driver ⇒ 14.88 Mpps both ways

No support for forwarding traffic between two ports
⇒ but you can use VLANs and a switch :-)

Reactive design only - doesn't generate traffic
⇒ pktgen or PF_PACKET hacks still required for generation

No support for mangling outgoing traffic. Really needed ?

Not yet implemented on loopback

Line-rate 10Gbps capture already works - tested!

Still missing dedicated statistics

Easier to implement in drivers already using build_skb()

Possible applications

Possible applications for NDIV include :

Network testing (eg: with SLHTTPD)

Measuring latency (via packet rate on a loop)

Line-rate packet capture, firewalling, pattern matching, ...

Traffic load balancing (using VLANs)

Traffic bridging / routing (using VLANs)

Possible applications for SLHTTPD include :

Network equipment validation (proxies, firewalls, routers, load balancers)

Internet of Things (IoT) ⇒ check sensors over HTTP without a TCP stack

Serving small static objects (favicon.ico)

Error pages and redirects

Thanks!

Questions ?
Complete article here : http://1wt.eu/articles/openblocks-http-server/
(contains experimental code)

Final patches should be available by Q1 2015 at http://haproxy.com/

For any other question : willy@haproxy.com

