
Analyzing Linux Kernel
interface changes by

looking at binaries

Dodji Seketeli <dodji@redhat.com>

Kernel Recipes, Paris 2016

mailto:dodji@redhat.com

2

What if we could see ...

● Changes in interfaces between vmlinux and its
modules

● Just by looking at:
– Two versions of vmlinux

– Two versions of a given kernel module

● A kind of diff
– For (ELF) binaries

– That shows changes in a meaningful way for programmers

3

There is tooling for almost that

● abidiff works on userspace ELF binaries
● Reads:

– Basic information from ELF (symbols, etc)

– Semantic information from ELF debug information
● Functions, variables
● Type hierarchies
● Source locations of definitions

● Builds internal representation of an ABI Corpus
– Globally defined functions and variables of a binary

– Including their types

● Builds internal representation of differences between ABI Corpora

4

Action: semantic diffs of binaries
$ abidiff libtest-v0.so libtest-v1.so

Functions changes summary: 0 Removed, 1 Changed, 0 Added function

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

1 function with some indirect sub-type change:

 [C]'function int foo(struct_type*)' at test-v1.c:10:1 has some indirect sub-type changes:

 return type changed:

 type name changed from 'int' to 'char'

 type size changed from 32 to 8 bits

 parameter 1 of type 'struct_type*' has sub-type changes:

 in pointed to type 'typedef struct_type' at test-v1.h:9:1:

 underlying type 'struct S' at test-v1.h:4:1 changed:

 1 data member change:

 type of 'priv_type* S::priv' changed:

 in pointed to type 'typedef priv_type' at test-v1.h:2:1:

 underlying type 'struct priv' at test-v1.c:3:1 changed:

 type size changed from 64 to 96 bits

 1 data member insertion:

 'unsigned int priv::added_in_between', at offset 32 (in bits) at test-v1.c:6:1

 1 data member change:

 'char priv::m2' offset changed from 32 to 64 (in bits)

$

5

And the flat source code diff was ...

$ diff -u test-v0.c test-v1.c

--- test-v0.c 2016-09-29 12:11:12.688336271 +0200

+++ test-v1.c 2016-09-29 12:28:04.275719322 +0200

@@ -1,12 +1,13 @@

-#include "include1/test-v0.h"

+#include "include2/test-v1.h"

 struct priv

 {

 int m1;

+ unsigned added_in_between;

 char m2;

 };

-int foo(struct_type *s)

+char foo(struct_type *s)

 {

 return s->priv->m2;

 }

$ diff -u include1/test-v0.h include2/test-v1.h

--- include1/test-v0.h 2016-09-29 11:32:06.363637581 +0200

+++ include2/test-v1.h 2016-09-29 11:31:27.870003380 +0200

@@ -8,4 +8,4 @@

 typedef struct S struct_type;

-int foo(struct_type *s);

+char foo(struct_type *s);

$

6

Less noise

$ abidiff --headers-dir1 include1 --headers-dir2 include2 libtest-v0.so libtest-v1.so

Functions changes summary: 0 Removed, 1 Changed, 0 Added function

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

1 function with some indirect sub-type change:

 [C]'function int foo(struct_type*)' at test-v1.c:10:1 has some indirect sub-type changes:

 return type changed:

 type name changed from 'int' to 'char'

 type size changed from 32 to 8 bits

$

7

Choose your differences! [1/2]
$ abidiff libtest2-v0.so libtest2-v1.so

Functions changes summary: 1 Removed, 1 Changed, 1 Added functions

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

1 Removed function:

 'function void function_to_remove()' {function_to_remove}

1 Added function:

 'function void function_added()' {function_added}

1 function with some indirect sub-type change:

 [C]'function void function(int, char)' at test2-v1.c:1:1 has some indirect sub-type changes:

 return type changed:

 type name changed from 'void' to 'int'

 type size changed from 0 to 32 bits

 parameter 2 of type 'char' was removed

$

8

Choose your differences! [2/2]
$ cat libtest2.abignore

[suppress_function]

 change_kind = added-function

$ abidiff --suppr libtest2.abignore libtest2-v0.so libtest2-v1.so

Functions changes summary: 1 Removed, 1 Changed, 0 Added functions (1 filtered out)

Variables changes summary: 0 Removed, 0 Changed, 0 Added variable

1 Removed function:

 'function void function_to_remove()' {function_to_remove}

1 function with some indirect sub-type change:

 [C]'function void function(int, char)' at test2-v1.c:1:1 has some indirect sub-type changes:

 return type changed:

 type name changed from 'void' to 'int'

 type size changed from 0 to 32 bits

 parameter 2 of type 'char' was removed

$

9

Save binary interfaces

$ abidw libtest-v0.so > libtest-v0.so.abi

10

Other tools in the family

● abipkgdiff: compare binaries in two packages
– RPMs and DEBs

● fedabipkgdiff: compare binaries in remote packages
– Queries packages built in the remote Fedora build

system

– This works just for Fedora

● Automatic ABI change review of Fedora package
updates

11

Nothing for the
Linux Kernel!

(Yet)

12

Pipe dream

What if we had hypothetical tools to analyze kernel/modules interface changes?

$ kabidiff usr/lib/debug/lib/modules/4.8.0-0.rc7.git1.1.local.fc26.x86_64/vmlinux \

 usr/lib/debug/lib/modules/4.8.0-0.rc8.git1.1.local.fc26.x86_64/vmlinux

$ kabipkgdiff linux.git/master/build-dir/ linux.git/my-hack-branch/build-dir/

13

What it would take

● Handle special Linux/ELF symbol sections
– __export_symbol, __export_symbol_gpl sections

● Support augmenting a (vmlinux) ABI Corpus
– With ABI artifacts coming from modules

● More memory consumption optimizations

14

Work has just started ...

● In the dodji/kabidiff branch of the Git repo
– git clone -b dodji/kabidiff git://sourceware.org/git/libabigail.git

● So far:
– Added a –linux-kernel-mode to abidw

– people.redhat.com/~dseketel/kabidiff/vmlinux.abi.txt

– people.redhat.com/~dseketel/kabidiff/tun.ko.abi.txt

– people.redhat.com/~dseketel/kabidiff/uio.ko.abi.txt

15

What do you think?

● irc://irc.oftc.net#libabigail
● https://sourceware.org/libabigail/manual/
● https://sourceware.org/libabigail/apidoc/

● https://sourceware.org/libabigail/wiki/
● https://sourceware.org/bugzilla/enter_bug.cgi?product=libabigail

● https://sourceware.org/libabigail/wiki/SubscribeToMailingList

● https://www.sourceware.org/libabigail/

https://sourceware.org/libabigail/manual/
https://sourceware.org/libabigail/apidoc/
https://sourceware.org/libabigail/wiki/
https://sourceware.org/bugzilla/enter_bug.cgi?product=libabigail

16

Thank you
And

Enjoy Paris!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

