Speeding up development by setting up a
kernel build farm

Willy Tarreau
HAProxy Technologies

Kernel Recipes 2016

Outline

e Target

e Context

e Solutions

o Pitfalls

* Improvements

Target

* Developers who build a lot of code

* Maintainers who backport lots of patches

° Deop

e Deve

e who have to debug and bisect
opers having to use very slow laptops

(“ultrabooks”)

e Those who like to have fun with clusters
e Others ?

Observations

» Backporting fixes into old kernels Is not trivial
* |t often causes build failures

* Need to build a lot to validate backports

* Build time dominates in a backport session

* Not always building from the same place
| spend a lot of time building distros as well...

How Is time spent

 Lots of time spent between keyboard and chair
* Few short build sessions (< 10s)

 Many medium build sessions (~ 1mn)
* Few long build sessions (>15mn)
* You never know how long it takes

The goal Is In fact to reduce the wait time!

ldeas on how to reduce build time

» Stop testing backports and rely on previews :-)
* Release more often with less patches

* Buy a bigger machine

 Use a compiler cache

e Distribute the build over several machines

ldeas on how to reduce build time

* Release more often with less patches
 Buy a bigger machine
 Use a compiler cache

e Distribute the build over several machines

ldeas on how to reduce build time

* Buy a bigger machine

 Use a compiler cache

e Distribute the build over several machines

ldeas on how to reduce build time

 Use a compiler cache

e Distribute the build over several machines

ldeas on how to reduce build time

e Distribute the build over several machines

ldeas on how to reduce build time

e Distribute the build over several machines

Distributing the build ?

For this, you need :

» A distributable workload (not kidding)

* Multiple machines

* The exact same compiler everywhere

« Some way to submit the job to these machines
* Alow enough latency

Distributable workloads

Quite a few requirements :
« Strong support for parallel builds (make -))
 No dependency on the build node...

e ...or ability to replicate the build environment
 Many more C files to build than machines
 Homogenous build times (hence sizes)

=> The kernel fits pretty well here.

Distributing the build ?

For this, you need :

* Adistributable workload (not kidding)

* Multiple machines

* The exact same compiler everywhere

« Some way to submit the job to these machines
* Alow enough latency

Distributing the build ?

For this, you need :

* Adistributable workload (not kidding)

* Multiple machines

« Some way to submit the job to these machines
* Alow enough latency

Same compiler everywhere ?

It is absolutelely mandatory
=> Use crosstool-ng for this even for the local node

* Reusable, archivable configurations

 Builds relocatable toolchains that run everywhere
« Supports Canadian Cross compilers

e Supports bare-metal compilers

» Use of arch-vendor-os-abi naming allows many different toolchains to
coexist

Hint. set the gcc version in the vendor field, eg x86_64-gcc47-linux-gnu

Distributing the build ?

For this, you need :

* Adistributable workload (not kidding)
* Multiple machines

* The exact same compiler everywhere

* Alow enough latency

Distributed build controller

This component will be responsible for distributing the load across all the
machines. There are a few prerequisites :

* Must not be intrusive in the build process :
— No extra steps

- No patching

Must present a very low overhead

Must support cross-compilers

Must be smart enough to fall back on the local node if any risk

Should ignore unreachable machines

=> distcc is exactly all this

A few words on distcc

* Works either as a wrapper or in masqueraded mode :
$In -s /usr/bin/distcc x86 64-gcc47-1inux-gnu-gcc
$ make -j 20 CC=$PWD x86_ 64-gcc47-1i nux-gnu-gcc

Automatically detects options involving the local node.

Can use environment variables for nodes list

Supports per-node usage limits

Uses file-based node locking (no deamon)

Detects dead nodes and can sometimes retry locally

Warnings on distcc

* Will not use remote nodes if gcov profiling Is
enabled

=2 sed -i ‘s,.*\(CONFIG_GCOV_KERNEL\).*\1=n," .config

* Pre-processing and linking are local and
consume some time (approx 20-30%)

How to compare performance

» Depends on number of files, CPU count,
parallelism, etc...

* Need to use a portable project as a reference to
compare all machines, and stick to that version

» Count the project’s line count to establish a metric
In lines per second.

- Hint: replace “gcc -¢” with “gcc -S”, build, and count
non-empty lines not starting with “#”.

- Eg: 458870 lines for haproxy-6bcbh0a84.

How to compare performance (...)

» Set cpufreqg governor to “performance”
 Run multiple times (get at least 3 similar results)

* For more details on the method, please consult
the wiki link at the end.

Suitable machines

The first question is :

What do we want to optimize ?

Build performance for a given cost ?

Number of nodes (ie switch ports) ?

Hardware cost for a given performance level ?

Hardware size / weight ?

Power consumption / cooling / noise ?

Suitable machines (...)

The second question is :

What impacts performance ?

CPU architecture and family (AMD Phenom and later, intel core
13/15/i7, ARM cortex A17 & A53 are efficient)

DRAM latency (target high frequency and large busses)

CPU caches sizes and latencies

Storage access time if any (building in /dev/shm is better)

Compiler build options (save ~10% by playing with ct-ng)

Suitable machines (...)

* The “BogoLocs” metric models expected performance
numbers and avoids uselessly testing unsuitable hardware

120000 - T
i5-3320mM-3300
110000 i7-4780k-4000 o
i7-6700k-4400 =
100000 F Atom-M2E600-1600 3 |
OdroidC2«7-1536 ——
OdroidC2w8-153F
90000 ManoPlw7-1400 o
Mirabox-1200
80000 ClearFog-2000 o -
TO34-1608/3596
W 70000 TO34-1608/480 —— 4
o T034-1992/396 D
el 60000 |- TO34-1992/480 —— |
5
o S0000
40000 | i
30000 |- -
20000 | |
1DDDD - I_I—[|
D | .—' 1 1
1 2 4 8

Mumber of cores

Suitable machines (...)

 BogoLocs only uses ramlat output
* |t Is surprizingly accurate for a prediction

* |t reveals Is that the most important speed limiting
factors are the following, from most to least important :

- DRAM latency (time to load a cache line)
- L3 cache latency (if any)

- L2 cache latency (if any)

- CPU frequency

— Core count.

Optimizing for performance

Always ensure the build nodes are properly used :

« Top/vmstat should almost always show ~100% CPU

e Local machine should almost never stay around 100% CPU

* Network must not be saturated

Real world example :

e Controller: Thinkpad T430s (core i5 2*3.1 GHz). Avg 70% CPU
* Build nodes: 4*CS-008 (RK3288 4*1.8 GHz). 95% CPU

« Network: 180 Mbps avg, peaks at 450 Mbps.

« Theorical limit for this controller: ~6 build nodes.

Optimizing for performance (...)

PC-type machines are the fastest and can be tuned :

Fill all memory channels with fastest DRAM available (20-50% gains possible)

Enable Hyperthreading when available (~50% gain max)

Overclocking is a possibility (~15% gain max)

Add more RAM to improve file caching

Less gain over 8 cores due to memory bottlenecks

... but they (are expensive) and (are huge or noisy (or both)) and (draw a lot of
power) but they are versatile.

Hint: chose motherboards, CPUs and RAM designed for gamers.

Optimizing for the number of nodes

Use case : limited connectivity, limited build
parallelism, boss willing to buy only one server, etc.

=> Need for highest performance per node

Dual-socket high-frequency, 8-core x86 machines with
all RAM slots populated have a huge memory
bandwidth and are not very expensive.

=> often bigger than the typical PC and draw more
power.

Optimizing for hardware costs

In 2016, a quad-core 1.2 GHz machine costs $8.
Eg: NanoPIl NEO :

«
Bl X

o= P

P

N

http://www.friendlyarm.com/index.php?route=product/product&path=69&product_id=132

Optimizing for hardware costs (...)

But does it really work ?

e Yes it does, but it will be around 16 times slower
than a $800 PC.

* |t may be even slower once It starts heating and
throttles

* |t is limited to 100 Mbps per node (ok for this
one)

... and there are hidden costs

Hidden costs of very small hardware

» Shipping costs : ~$5 per machine

« Connectivity : a switch costs at least ~$2 per port
» Ethernet cable : ~$1 per cable

* A heatsink is needed to avoid throttling : $1

« A micro-SD card is needed to boot : $3

« AUSB power supply is needed : $2

=> Total: ~$22 per machine for 1/16 of a $800 PC =
$350 per PC equivalent, not very interesting

Pitfalls of very small hardware

» Large files will take 15-20 times as long as they take on
a PC. A single large file can extend the build time.

» Quickly require some enclosures or rack mount options
* Heating, heating, heating...

» Stability issues : many vendors sell overclocked CPUs
(eg: some OrangePI claim 1.6 GHz for this 1.2 GHz
CPU)

 Sometimes advertised frequency cannot be reached

Mid-range hardware

Often sold as “small PCSs”

$25-$60 price range

CPUs up to quad-cortex A9 at 2 GHz
Eg: NanoPI2-Fire and Odroid-C2:

Mid-range hardware (...)

Pros:

* Very interesting form factor, better cooling

* High performance density

 Some available in 8 A53 cores (eg: NanoPI-M3)
cons:

« Comparatively more expensive per board

« Some platforms heat a lot (eg: Allwinner chips)
« Often forced to run their own kernel

High-range hardware

» Often sold as “set-top boxes” (STB)
e $50-$200 price range

» CPUs: 4-8 A17/A53 at 1.5-2.0 GHz
* Eg: MIQI, RKM-v5, CS-008 (clone) :

High-range hardware (...)

Pros:

 Very high performance density (up to ¥ of a $800 PC)
» Gigabit Ethernet connectivity (not always)

* On-board eMMC storage

« Often ultimately gets supported in mainline (eg: MiQi)
cons:

« Often sold on Android, porting can be a pain (but fun)

e Setting up a chroot in android doesn’t always work due to
selinux

High-range hardware (...)

Warnings:

 Varying build quality (eg: CS-008 clones with fake RAM
chips)

 Varying software guality for cheaper clones
» Kernel lying on the real frequency

» Advertised power draw is lower than reality, need for a
strong USB power supply.

* Thermal throttling may happen on heating, heatsinks
are always needed even If sold without

Personal choice

My personal preference goes to these ones :
1. MiQi ($39, 4xA17 1.8 GHz, 1GB 64-bit DDR3-1600)
=> ~25k LoC/s
2. NanoPI-M3 ($35, 8xA53 1.4 GHz, 1GB 32-bit DDR3-1600)
=> ~21k LoC/s
3. Odroid-C2 ($35, 4xA53 1.5 GHz, 2GB 32-bit DDR3-912)
=> ~16k LoC/s
4. RKMv5/T034/CS008 ($60, 4xAl17 1.6GHz, 2GB 32-bit DDR2-800)
=> ~18k LoC/s

Current Implementation

4 CS-008 at
1.8 GHz, 5-
port GIigE
switch, 5x2A
PSU. Total
cost: $280 for
16 Al7 cores
and 8 GB
RAM. Builds | %
allmodconfig
In 14 mn vs
43 mn on
laptop.

Future research

e Experiment with distcc’s “pump” mode
« Use haproxy in front of distccd :

» Avoid the switch for the portable version :

- Try WiFi with LZO (unsuited without, 180-450 Mbps for 4
machines).

- Try USB-NET on OTG ports with LZO over a USB hub (some USB
power supplies include the hub).

More or less important hints

Don’t focus on kernel optimization/support as long as it is able to quickly and
reliably execute gcc.

Any lightweight distro works (even a chroot inside Android if selinux is not too
strict). Using “formilux” here (~10 MB).

Check with “top” that there’s no CPU hog on the machine (lightdm, systemd)

Use “ramlat” to measure the performance impact of graphics mode. Disable,
reduce, rebuild without support, or kill Xorg.

Unlocked core i7 are amazing when stuffed with fast DRAM
Xeons and Atoms are not really worth the price.
Cortex Al7 is very strong (half a core i15 at 2/3 the frequency) but expensive

Cortex A53 is 2/3 its performance and much cheaper but often provided with slow
RAM and more cores

Cooling: it's up to you (passive, active, ...)

More or less important hints (...)

configure leds as heartbeat to spot dead machines

On a desk, daisy-chain clusters : 3 per 5-port
switch, 6 per 8-port switch.

Overclocking: sometimes OK, especially for build
testing, or on “gamers” machines.

Use power-meters to ensure the power usage
remains below 10W per node for fanless operation

More or less important hints (...)

configure leds as heartbeat to spot dead machines

On a desk, daisy-chain clusters : 3 per 5-port switch, 6 per 8-port
switch:

Overclocking: sometimes OK, especially for build testing, or on
“gamers” machines.

Use power-meters to ensure the power usage remains below 10W
per node for fanless operation

Useful links

» Distcc: https://github.com/distcc
« Crosstool-ng: http://crosstool-ng.org/

« Wiki page listing test reports of devices :
http://wiki.ant-computing.com/Choosing_a_processor_for_a_buil
d farm

 mgmaker’s MiQI board :
https://forum.mgmaker.com/t/announcing-miqgi-a-credit-card-size
d-computer/371

* FriendlyARM’s NanoPI boards : http://www.friendlyarm.com/

« Hardkernel’'s Odroid-C2 board :
http://www.hardkernel.com/main/products/prdt_info.php

« Rikomagic’s RKM-v5 device : http://www.rikomagic.co.uk/

https://github.com/distcc
http://crosstool-ng.org/
http://wiki.ant-computing.com/Choosing_a_processor_for_a_build_farm
http://wiki.ant-computing.com/Choosing_a_processor_for_a_build_farm
https://forum.mqmaker.com/t/announcing-miqi-a-credit-card-sized-computer/371
https://forum.mqmaker.com/t/announcing-miqi-a-credit-card-sized-computer/371
http://www.friendlyarm.com/
http://www.hardkernel.com/main/products/prdt_info.php
http://www.rikomagic.co.uk/

That's all folks!

Thanks!
Questions / Comments / Jokes ?

Contact: Willy Tarreau <willy@haproxy.com>

HAProxy is hiring talented people. Contact us!

mailto:willy@haproxy.com

