

Speeding up development by setting up a
kernel build farm

Willy Tarreau
HAProxy Technologies

Kernel Recipes 2016

Outline

● Target
● Context
● Solutions
● Pitfalls
● Improvements

Target

● Developers who build a lot of code
● Maintainers who backport lots of patches
● People who have to debug and bisect
● Developers having to use very slow laptops

(“ultrabooks”)
● Those who like to have fun with clusters
● Others ?

Observations

● Backporting fixes into old kernels is not trivial
● It often causes build failures
● Need to build a lot to validate backports
● Build time dominates in a backport session
● Not always building from the same place
● I spend a lot of time building distros as well...

How is time spent

● Lots of time spent between keyboard and chair
● Few short build sessions (< 10s)
● Many medium build sessions (~ 1mn)
● Few long build sessions (>15mn)
● You never know how long it takes

The goal is in fact to reduce the wait time!

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Ideas on how to reduce build time

● Stop testing backports and rely on previews :-)
● Release more often with less patches
● Buy a bigger machine
● Use a compiler cache
● Distribute the build over several machines

Distributing the build ?

For this, you need :
● A distributable workload (not kidding)
● Multiple machines
● The exact same compiler everywhere
● Some way to submit the job to these machines
● A low enough latency

Distributable workloads

Quite a few requirements :
● Strong support for parallel builds (make -j)
● No dependency on the build node...
● ...or ability to replicate the build environment
● Many more C files to build than machines
● Homogenous build times (hence sizes)

=> The kernel fits pretty well here.

Distributing the build ?

For this, you need :
● A distributable workload (not kidding)
● Multiple machines
● The exact same compiler everywhere
● Some way to submit the job to these machines
● A low enough latency

Distributing the build ?

For this, you need :
● A distributable workload (not kidding)
● Multiple machines
● The exact same compiler everywhere
● Some way to submit the job to these machines
● A low enough latency

Same compiler everywhere ?

It is absolutelely mandatory

=> Use crosstool-ng for this even for the local node

● Reusable, archivable configurations
● Builds relocatable toolchains that run everywhere
● Supports Canadian Cross compilers
● Supports bare-metal compilers
● Use of arch-vendor-os-abi naming allows many different toolchains to

coexist

Hint: set the gcc version in the vendor field, eg x86_64-gcc47-linux-gnu

Distributing the build ?

For this, you need :
● A distributable workload (not kidding)
● Multiple machines
● The exact same compiler everywhere
● Some way to submit the job to these machines
● A low enough latency

Distributed build controller

This component will be responsible for distributing the load across all the
machines. There are a few prerequisites :
● Must not be intrusive in the build process :

– No extra steps

– No patching

● Must present a very low overhead
● Must support cross-compilers
● Must be smart enough to fall back on the local node if any risk
● Should ignore unreachable machines

=> distcc is exactly all this

A few words on distcc

● Works either as a wrapper or in masqueraded mode :
 $ ln -s /usr/bin/distcc x86_64-gcc47-linux-gnu-gcc

 $ make -j 20 CC=$PWD/x86_64-gcc47-linux-gnu-gcc

● Automatically detects options involving the local node.
● Can use environment variables for nodes list
● Supports per-node usage limits
● Uses file-based node locking (no deamon)
● Detects dead nodes and can sometimes retry locally

Warnings on distcc

● Will not use remote nodes if gcov profiling is
enabled

=> sed -i ‘s,.*\(CONFIG_GCOV_KERNEL\).*,\1=n,’ .config

● Pre-processing and linking are local and
consume some time (approx 20-30%)

How to compare performance

● Depends on number of files, CPU count,
parallelism, etc...

● Need to use a portable project as a reference to
compare all machines, and stick to that version

● Count the project’s line count to establish a metric
in lines per second.
– Hint: replace “gcc -c” with “gcc -S”, build, and count

non-empty lines not starting with “#”.

– Eg: 458870 lines for haproxy-6bcb0a84.

How to compare performance (...)

● Set cpufreq governor to “performance”
● Run multiple times (get at least 3 similar results)
● For more details on the method, please consult

the wiki link at the end.

Suitable machines

The first question is :

What do we want to optimize ?

● Build performance for a given cost ?
● Number of nodes (ie switch ports) ?
● Hardware cost for a given performance level ?
● Hardware size / weight ?
● Power consumption / cooling / noise ?

Suitable machines (...)

The second question is :

What impacts performance ?

● CPU architecture and family (AMD Phenom and later, intel core
i3/i5/i7, ARM cortex A17 & A53 are efficient)

● DRAM latency (target high frequency and large busses)
● CPU caches sizes and latencies
● Storage access time if any (building in /dev/shm is better)
● Compiler build options (save ~10% by playing with ct-ng)

Suitable machines (...)

● The “BogoLocs” metric models expected performance
numbers and avoids uselessly testing unsuitable hardware :

Suitable machines (...)

● BogoLocs only uses ramlat output
● It is surprizingly accurate for a prediction
● It reveals is that the most important speed limiting

factors are the following, from most to least important :
– DRAM latency (time to load a cache line)

– L3 cache latency (if any)

– L2 cache latency (if any)

– CPU frequency

– Core count.

Optimizing for performance

Always ensure the build nodes are properly used :
● Top/vmstat should almost always show ~100% CPU
● Local machine should almost never stay around 100% CPU
● Network must not be saturated

Real world example :
● Controller: Thinkpad T430s (core i5 2*3.1 GHz). Avg 70% CPU
● Build nodes: 4*CS-008 (RK3288 4*1.8 GHz). 95% CPU
● Network: 180 Mbps avg, peaks at 450 Mbps.
● Theorical limit for this controller: ~6 build nodes.

Optimizing for performance (...)

PC-type machines are the fastest and can be tuned :
● Fill all memory channels with fastest DRAM available (20-50% gains possible)
● Enable Hyperthreading when available (~50% gain max)
● Overclocking is a possibility (~15% gain max)
● Add more RAM to improve file caching
● Less gain over 8 cores due to memory bottlenecks

… but they (are expensive) and (are huge or noisy (or both)) and (draw a lot of
power) but they are versatile.

Hint: chose motherboards, CPUs and RAM designed for gamers.

Optimizing for the number of nodes

Use case : limited connectivity, limited build
parallelism, boss willing to buy only one server, etc.

=> Need for highest performance per node

Dual-socket high-frequency, 8-core x86 machines with
all RAM slots populated have a huge memory
bandwidth and are not very expensive.

=> often bigger than the typical PC and draw more
power.

Optimizing for hardware costs

In 2016, a quad-core 1.2 GHz machine costs $8.
Eg: NanoPI NEO :

http://www.friendlyarm.com/index.php?route=product/product&path=69&product_id=132

Optimizing for hardware costs (...)

But does it really work ?
● Yes it does, but it will be around 16 times slower

than a $800 PC.
● It may be even slower once it starts heating and

throttles
● It is limited to 100 Mbps per node (ok for this

one)

… and there are hidden costs

Hidden costs of very small hardware

● Shipping costs : ~$5 per machine
● Connectivity : a switch costs at least ~$2 per port
● Ethernet cable : ~$1 per cable
● A heatsink is needed to avoid throttling : $1
● A micro-SD card is needed to boot : $3
● A USB power supply is needed : $2

=> Total: ~$22 per machine for 1/16 of a $800 PC =
$350 per PC equivalent, not very interesting

Pitfalls of very small hardware

● Large files will take 15-20 times as long as they take on
a PC. A single large file can extend the build time.

● Quickly require some enclosures or rack mount options
● Heating, heating, heating...
● Stability issues : many vendors sell overclocked CPUs

(eg: some OrangePI claim 1.6 GHz for this 1.2 GHz
CPU)

● Sometimes advertised frequency cannot be reached

Mid-range hardware

● Often sold as “small PCs”
● $25-$60 price range
● CPUs up to quad-cortex A9 at 2 GHz
● Eg: NanoPI2-Fire and Odroid-C2:

Mid-range hardware (...)

Pros:
● Very interesting form factor, better cooling
● High performance density
● Some available in 8 A53 cores (eg: NanoPI-M3)

Cons:
● Comparatively more expensive per board
● Some platforms heat a lot (eg: Allwinner chips)
● Often forced to run their own kernel

High-range hardware

● Often sold as “set-top boxes” (STB)
● $50-$200 price range
● CPUs: 4-8 A17/A53 at 1.5-2.0 GHz
● Eg: MiQi, RKM-v5, CS-008 (clone) :

High-range hardware (...)

Pros:
● Very high performance density (up to ¼ of a $800 PC)
● Gigabit Ethernet connectivity (not always)
● On-board eMMC storage
● Often ultimately gets supported in mainline (eg: MiQi)

Cons:
● Often sold on Android, porting can be a pain (but fun)
● Setting up a chroot in android doesn’t always work due to

selinux

High-range hardware (...)

Warnings:
● Varying build quality (eg: CS-008 clones with fake RAM

chips)
● Varying software quality for cheaper clones
● Kernel lying on the real frequency
● Advertised power draw is lower than reality, need for a

strong USB power supply.
● Thermal throttling may happen on heating, heatsinks

are always needed even if sold without

Personal choice

My personal preference goes to these ones :

1. MiQi ($39, 4xA17 1.8 GHz, 1GB 64-bit DDR3-1600)

=> ~25k LoC/s

2. NanoPI-M3 ($35, 8xA53 1.4 GHz, 1GB 32-bit DDR3-1600)

=> ~21k LoC/s

3. Odroid-C2 ($35, 4xA53 1.5 GHz, 2GB 32-bit DDR3-912)

=> ~16k LoC/s

4. RKMv5/T034/CS008 ($60, 4xA17 1.6GHz, 2GB 32-bit DDR2-800)

=> ~18k LoC/s

Current Implementation
4 CS-008 at
1.8 GHz, 5-
port GigE
switch, 5x2A
PSU. Total
cost: $280 for
16 A17 cores
and 8 GB
RAM. Builds
allmodconfig
in 14 mn vs
43 mn on
laptop.

Future research

● Experiment with distcc’s “pump” mode
● Use haproxy in front of distccd :

● Avoid the switch for the portable version :
– Try WiFi with LZO (unsuited without, 180-450 Mbps for 4

machines).

– Try USB-NET on OTG ports with LZO over a USB hub (some USB
power supplies include the hub).

More or less important hints

● Don’t focus on kernel optimization/support as long as it is able to quickly and
reliably execute gcc.

● Any lightweight distro works (even a chroot inside Android if selinux is not too
strict). Using “formilux” here (~10 MB).

● Check with “top” that there’s no CPU hog on the machine (lightdm, systemd)
● Use “ramlat” to measure the performance impact of graphics mode. Disable,

reduce, rebuild without support, or kill Xorg.
● Unlocked core i7 are amazing when stuffed with fast DRAM
● Xeons and Atoms are not really worth the price.
● Cortex A17 is very strong (half a core i5 at 2/3 the frequency) but expensive
● Cortex A53 is 2/3 its performance and much cheaper but often provided with slow

RAM and more cores
● Cooling: it’s up to you (passive, active, ...)

More or less important hints (...)

● configure leds as heartbeat to spot dead machines
● On a desk, daisy-chain clusters : 3 per 5-port

switch, 6 per 8-port switch.
● Overclocking: sometimes OK, especially for build

testing, or on “gamers” machines.
● Use power-meters to ensure the power usage

remains below 10W per node for fanless operation

More or less important hints (...)

● configure leds as heartbeat to spot dead machines
● On a desk, daisy-chain clusters : 3 per 5-port switch, 6 per 8-port

switch:

● Overclocking: sometimes OK, especially for build testing, or on
“gamers” machines.

● Use power-meters to ensure the power usage remains below 10W
per node for fanless operation

Useful links

● Distcc: https://github.com/distcc
● Crosstool-ng: http://crosstool-ng.org/
● Wiki page listing test reports of devices :

http://wiki.ant-computing.com/Choosing_a_processor_for_a_buil
d_farm

● mqmaker’s MiQi board :
https://forum.mqmaker.com/t/announcing-miqi-a-credit-card-size
d-computer/371

● FriendlyARM’s NanoPI boards : http://www.friendlyarm.com/
● Hardkernel’s Odroid-C2 board :

http://www.hardkernel.com/main/products/prdt_info.php
● Rikomagic’s RKM-v5 device : http://www.rikomagic.co.uk/

https://github.com/distcc
http://crosstool-ng.org/
http://wiki.ant-computing.com/Choosing_a_processor_for_a_build_farm
http://wiki.ant-computing.com/Choosing_a_processor_for_a_build_farm
https://forum.mqmaker.com/t/announcing-miqi-a-credit-card-sized-computer/371
https://forum.mqmaker.com/t/announcing-miqi-a-credit-card-sized-computer/371
http://www.friendlyarm.com/
http://www.hardkernel.com/main/products/prdt_info.php
http://www.rikomagic.co.uk/

That's all folks!

Thanks!

Questions / Comments / Jokes ?

Contact: Willy Tarreau <willy@haproxy.com>

HAProxy is hiring talented people. Contact us!

mailto:willy@haproxy.com

