

Linux Driver Model

“web woven by a spider on drugs”

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/presentation-driver-model

You don’t need to know this.

struct kref
● Reference counting
● No locks
● Release function required

struct kobjects
● Base object type
● sysfs representation
● Data structure glue
● Hotplug event handling

struct attribute
● sysfs files for kobjects
● 1 text value per file
● Binary files possible
● Never manage indivually

struct kset
● Groups kobjects together

kobj_type
● release()
● sysfs functions for kobject
● Namespace handling

struct device
● Universal structure
● Belongs to a bus or “class”

struct device_type
● Same bus, different type

struct device_driver
● controls a device
● probe/remove
● shutdown/suspend/resume
● Default attributes

struct bus_type
● binds devices and drivers
● matching
● uevents
● shutdown

bus responsibilities
● register bus
● create devices
● register drivers
● suspend/resume

Create a device
● set the bus type
● set parent pointer
● set attribute groups
● device_initialize()
● ..other stuff..
● device_add()

Register a driver
● set the bus type
● set up probe/release
● set module ownership
● driver_register()

struct class
● user visable devices
● yes, it’s a bus…
● suspend/resume
● release
● default attributes

class responsibilities
● class_create/class_register
● reserve major/minor
● use in device_create
● device_destroy
● free major/minor
● suspend/resume if wanted

shutdown
if device class→
 if class shutdown→
 device class shutdown(device)→ →

if device bus→
 if bus shutdown→
 device bus shutdown(device)→ →
 shutdown must call

 driver shutdown(device)→

Driver writer hints
● attribute groups only
● never call sysfs_*()

Class writer hints
● attribute groups only
● never call sysfs_*()

Bus writer hints
● My sincere appologies

“raw” sysfs/kobjects?
● Do not do it
● Really, no.
● Use a class or a bus
● Please no.
● Read the documentation
● Read it again
● Expect tough review cycle

github.com/gregkh/presentation-driver-model

Linux Driver Model

“web woven by a spider on drugs”

Greg Kroah-Hartman
gregkh@linuxfoundation.org

github.com/gregkh/presentation-driver-model

Subtitle is LWN quote

In 2.4 all subsystems were isolated and did
things their own way. After adding hotplug
support to the second subsystem, I figured
this needed to change

Pat Mochel wanted to get suspend/resume to
work, I wanted persistant device naming.
By the time 2.6 came out, we had naming
solved, still working on suspend/resume…

You don’t need to know this.

No driver write should have to mess with the
driver core at all.

Well, minor things, see my last slide.

It’s a complex mess, is a whole chapter in
LDD3, and there are parts of the kernel
code that I keep forgetting and having to
relearn at times.

Messy stuff.

struct kref
● Reference counting
● No locks
● Release function required

Don’t ever do your own reference counting

Kref is “proven” correct

Use it

You need a lock outside of the object, it must
be there

If no release function, why are you doing
reference counting?

struct kobjects
● Base object type
● sysfs representation
● Data structure glue
● Hotplug event handling

Handles all of the basic housekeeping for
kernel objects

Handles all of the links to other kobjects, the
heiarchy and other good stuff. Solid
functions that are known good.

Created out of the development process by Al
Viro during the driver core development and
was originally used in char devices

NEVER touch the kobject in a char device
structure, it doesn’t do what you think it
does.

struct attribute
● sysfs files for kobjects
● 1 text value per file
● Binary files possible
● Never manage indivually

You will be yelled at if you don’t follow these
rules.

Bad examples are a histogram graph plot by a
cpufreq driver

Hopefully all fixed.

Always document them in Documentation/ABI

struct kset
● Groups kobjects together

A “set” of kobjects that belong to the same
type of “subsystem”. Don’t have to be the
same type of object.

How you group a kobject together

kobj_type
● release()
● sysfs functions for kobject
● Namespace handling

The functions to call for your kobject

A kobject always has a kset and a kobj_type
Both are needed.

Namespace stuff is for only networking
kobjects, messy stuff.

struct device
● Universal structure
● Belongs to a bus or “class”

Basic features of all types of devices in the
kernel

Name, platform data, driver data, dma
information, MSI information, CMA,
firmware info, iommu, and so on

Always belongs to something, never have a
“blank” device.

NEVER ABUSE PLATFORM DEVICES!

struct device_type
● Same bus, different type

Devices that are of the same bus, but do
different things.

USB example – device, interface, endpoint,
port

Everything is handled by the same bus, but
sometimes you need to do minor different
things based on the type.

struct device_driver
● controls a device
● probe/remove
● shutdown/suspend/resume
● Default attributes

Controls a specific type of device

What you are used to thinking about, but you
don’t ever access this structure directly.

Busses wrap it with their “type” of driver.

struct bus_type
● binds devices and drivers
● matching
● uevents
● shutdown

How you group devices and drivers together.

Handles the matching of a device to a driver

Handles the uevents for hotplug

Can handle default shutdown functions for a
bus

bus responsibilities
● register bus
● create devices
● register drivers
● suspend/resume

Busses do a lot of different things

It’s a lot of work to write a bus, sorry about
this.

A small one can be done in 300 lines. Real
ones end up being much larger.

Create a device
● set the bus type
● set parent pointer
● set attribute groups
● device_initialize()
● ..other stuff..
● device_add()

A bus has to do all of this for when it creates a
new device.

If you don’t want to do device init/add, you
can just do device_register

You want to do other stuff sometimes like
figuring out what sysfs files to add for the
device before you announce it to the rest of
the world.

So most “real” busses do the two step
process.

Register a driver
● set the bus type
● set up probe/release
● set module ownership
● driver_register()

A bus also manages drivers for that bus

Has to handle registering and unregistering
the drivers, setting up the needed pointers
and other fun stuff.

struct class
● user visable devices
● yes, it’s a bus…
● suspend/resume
● release
● default attributes

“struct class” - my crowning achievement

A group of struct device.

These are the things that users are used to
seeing.

Input, gpio, pwm, misc, tty, block, and so on

Almost always has a device node to interact
with userspace.

Is not hardware-dependant

Like a bus, but not really, there are no drivers
for class devices.

Can handle suspend/resume and release for a
class device

class responsibilities
● class_create/class_register
● reserve major/minor
● use in device_create
● device_destroy
● free major/minor
● suspend/resume if wanted

Much simpler list of things that a class has to
do to mange devices.

Only about 30 lines of code.

Much easier than a bus.

shutdown
if device class→
 if class shutdown→
 device class shutdown(device)→ →

if device bus→
 if bus shutdown→
 device bus shutdown(device)→ →
 shutdown must call

 driver shutdown(device)→

Busses and classes and drivers all interact.

Example, shutdown.

When the system wants to shutdown, it walks
the list of devices and does the following.

If a device has a class, then it calls the
shutdown for it

If a device has a bus, then the bus is called
and told to call shutdown, which then finds
the bus driver for that device and then calls
shutdown.

Messy, but it works...

Driver writer hints
● attribute groups only
● never call sysfs_*()

Never create sysfs files individually.

Or at all, attribute groups should be handled
by your class or bus. If not, something is
almost always wrong and needs to be fixed.
Talk to me about this.

Never call any sysfs functions in a driver, or
really, any driver core functions.

Only exception, sysfs_notify() for when an
attribute value changes that someone was
calling select/poll on. Pretty rare.

Class writer hints
● attribute groups only
● never call sysfs_*()

Never create sysfs files individually.

Use class_create()

Bus writer hints
● My sincere appologies

It’s not easy, I know.

More can be done to make it easier. Help is
always appreciated, been on my TODO list
for over 5 years.

We add about 1-2 new busses every kernel
release so there’s almost always some
kernel devloper mad at me.

“raw” sysfs/kobjects?
● Do not do it
● Really, no.
● Use a class or a bus
● Please no.
● Read the documentation
● Read it again
● Expect tough review cycle

Ok, filesystems have to do it.

Firmware platforms had to do this.

It’s hard, rough, and easy to get wrong.

You thought writing a bus was difficult…

Loads of boilerplate code.

github.com/gregkh/presentation-driver-model

Obligatory Penguin Picture

