

The kernel report

(Kernel Recipes 2016 edition)

Jonathan Corbet
LWN.net

corbet@lwn.net

Recent releases

Version Date Days Devs Changesets
4.3 Nov 1 63 1,625 12,274
4.4 Jan 10 70 1,575 13,071
4.5 Mar 13 63 1,537 12,080
4.6 May 15 63 1,678 13,517
4.7 Jul 17 70 1,582 12,283

Recent releases

Version Date Days Devs Changesets
4.3 Nov 1 63 1,625 12,274
4.4 Jan 10 70 1,575 13,071
4.5 Mar 13 63 1,537 12,080
4.6 May 15 63 1,678 13,517
4.7 Jul 17 70 1,582 12,283

4.8 Oct 2 70 1,578* 13,253

Recent releases

Version Date Days Devs Changesets
4.3 Nov 1 63 1,625 12,274
4.4 Jan 10 70 1,575 13,071
4.5 Mar 13 63 1,537 12,080
4.6 May 15 63 1,678 13,517
4.7 Jul 17 70 1,582 12,283

4.8 Oct 2 70 1,578* 13,253

Total since 4.2 395 4,028 76,478

What’s changing in the develoment
community?

Not much!

The process continues to run smoothly

 Security

The year in CVE numbers

CVE-2016-0723 CVE-2016-0728 CVE-2016-0758 CVE-2016-0774 CVE-2016-0821
CVE-2016-0823 CVE-2016-1237 CVE-2016-1575 CVE-2016-1576 CVE-2016-1583
CVE-2016-2053 CVE-2016-2059 CVE-2016-2061 CVE-2016-2062 CVE-2016-2063
CVE-2016-2064 CVE-2016-2065 CVE-2016-2066 CVE-2016-2067 CVE-2016-2068
CVE-2016-2069 CVE-2016-2070 CVE-2016-2085 CVE-2016-2117 CVE-2016-2143
CVE-2016-2184 CVE-2016-2185 CVE-2016-2186 CVE-2016-2187 CVE-2016-2188
CVE-2016-2383 CVE-2016-2384 CVE-2016-2543 CVE-2016-2544 CVE-2016-2545
CVE-2016-2546 CVE-2016-2547 CVE-2016-2548 CVE-2016-2549 CVE-2016-2550
CVE-2016-2782 CVE-2016-2847 CVE-2016-2853 CVE-2016-2854 CVE-2016-3070
CVE-2016-3134 CVE-2016-3135 CVE-2016-3136 CVE-2016-3137 CVE-2016-3138
CVE-2016-3139 CVE-2016-3140 CVE-2016-3156 CVE-2016-3157 CVE-2016-3672
CVE-2016-3689 CVE-2016-3707 CVE-2016-3713 CVE-2016-3841 CVE-2016-3951
CVE-2016-3955 CVE-2016-3961 CVE-2016-4440 CVE-2016-4470 CVE-2016-4482
CVE-2016-4485 CVE-2016-4486 CVE-2016-4557 CVE-2016-4558 CVE-2016-4565
CVE-2016-4568 CVE-2016-4569 CVE-2016-4578 CVE-2016-4580 CVE-2016-4581
CVE-2016-4794 CVE-2016-4805 CVE-2016-4913 CVE-2016-4951 CVE-2016-4997
CVE-2016-4998 CVE-2016-5243 CVE-2016-5244 CVE-2016-5340 CVE-2016-5342
CVE-2016-5344 CVE-2016-5400 CVE-2016-5412 CVE-2016-5696 CVE-2016-5728
CVE-2016-5828 CVE-2016-5829 CVE-2016-6130 CVE-2016-6136 CVE-2016-6156
CVE-2016-6162 CVE-2016-6187 CVE-2016-6197 CVE-2016-6198 CVE-2016-6480
CVE-2016-6516

Our security algorithm

When a vulnerability is found:
Create a patch with a fix
Distributors ship an update

This approach has some problems...

Photo: Jeffrey Kontur

Our security algorithm

When a vulnerability is found:
Create a patch with a fix
Distributors ship an update

I have an example of a security bug that a Google
researcher found in a 3.10 kernel (but not mainline) I
fixed and pushed out an update, but never got picked
up in Nexus phones until 6 months later when I found
the right person/group to poke within Google.

That was a 6 month window where anyone could have
gotten root on your phone, easily.
— Greg Kroah-Hartman

Our security algorithm

When a vulnerability is found:
Create a patch with a fix
Distributors ship an update

Our defenses are
not sufficient for
today’s threats

Vulnerabilities will always be with us

Vulnerabilities will always be with us

We need to be eliminating classes
of exploits

Eliminating classes of exploits

Post-init read-only memory (v4.6)

Eliminating classes of exploits

Post-init read-only memory (v4.6)
Use of GCC plugins (v4.8)

Eliminating classes of exploits

Post-init read-only memory (v4.6)
Use of GCC plugins (v4.8)
Kernel stack hardening (v4.9?)

Eliminating classes of exploits

Post-init read-only memory (v4.6)
Use of GCC plugins (v4.8)
Kernel stack hardening (v4.9?)
Hardened user-copy (v4.8)

Eliminating classes of exploits

Post-init read-only memory (v4.6)
Use of GCC plugins (v4.8)
Kernel stack hardening (v4.9?)
Hardened user-copy (v4.8)
Reference-count hardening

Eliminating classes of exploits

Post-init read-only memory (v4.6)
Use of GCC plugins (v4.8)
Kernel stack hardening (v4.9?)
Hardened user-copy (v4.8)
Reference-count hardening

Much of this originates in grsecurity.net
Some funded by CII

What’s the catch?

Security-related code has tradeoffs:
Performance costs
User-space compatibility issues

Can we convince developers it’s
worth the cost?

Bypassing the kernel

Kernel bypass

Kernel bypass

Transport over UDP (TOU)

Use UDP to move packets around the net

Embed higher-level protocols within UDP packets

Transport protocols can be done in user space!

(See also: QUIC)

Why TOU?

Faster deployment of protocol enhancements

Why TOU?

Faster deployment of protocol enhancements

“The TCP stack in the Android/iOS/Windows
kernel is so out of date that in order to get
even moderately recent TCP features it is
necessary to do this.”
— David Miller, June 2016

Why TOU?

Faster deployment of protocol enhancements

Avoid middlebox interference

Why TOU?

Faster deployment of protocol enhancements

Avoid middlebox interference
Protocol deployment
End-to-end privacy

Why not TOU?

About those protocol enhancements
They don’t have to be free
They don’t have to become part of the public net

Do we want every app to speak its own protocol?

Will the kernel still be a strong
unifying force for the net?

BPF

The Berkeley Packet Filter

A simple in-kernel virtual machine

Users can load executable code into the kernel
bpf() system call

Data can be exchanged with the kernel or user
space

This sounds dangerous...?

Lots of rules for BPF programs
No loops
No access to arbitrary memory
No leaking kernel pointers to user space
No access to uninitialized data
Blinding of constants in programs
…

Limited to root in many cases
but not all

Uses of BPF

Filtering of packets to a socket
System call restriction via seccomp()
Perf events filtering
Packet classification and queuing
Tracepoint data filtering and analysis
Early device-level packet filter/drop/forward (XDP)

Uses of BPF

Filtering of packets to a socket
System call restriction via seccomp()
Perf events filtering
Packet classification and queuing
Tracepoint data filtering and analysis
Early device-level packet filter/drop/forward (XDP)
…?

Our brave new BPF world

Chunks of important kernel code come from user
space.

Stable kernels and backports

Remember 2.4?

Multiple years between releases

Huge feature gaps to fill

Distributors backported lots of code
...and shipped out-of-tree features

What did we do about it?

The “upstream first” rule

What did we do about it?

The “upstream first” rule

The “new” development model

Problem solved!

The 3.10 kernel

Was released in June 2013
3.10.73 update was March 2015

Is 221,430 patches behind the mainline

Fear of mainline kernels

The possibility of new bugs and regressions

Fear of mainline kernels

The possibility of new bugs and regressions

Vast amount of out-of-tree code to forward port

Why all that out-of-tree code?

Upstreaming can take a long time
Wakelocks
USB charging

Why all that out-of-tree code?

Upstreaming can take a long time
Wakelocks
USB charging

Some of it is not upstreamable
Scheduler rewrites

Why all that out-of-tree code?

Upstreaming can take a long time
Wakelocks
USB charging

Some of it is not upstreamable
Scheduler rewrites

The kernel moves too slowly!

Two points of view

Kernel developers

“We’ve been doing this
for 25 years and plan to
still be here 25 years
from now.”

Two points of view

Kernel developers

“We’ve been doing this
for 25 years and plan to
still be here 25 years
from now.”

CE manufacturers

“Nobody will remember
this product next year.”

Perhaps our biggest process
problem at the moment

Copyleft

The problem

Lots of companies shipping the kernel without
complying with the terms of the GPL.

To sue or not to sue?

Some say:
Companies will not comply without the threat of
consequences

Lawsuits have yielded useful code contributions in the
past

Without enforcement, the kernel is effectively BSD
licensed.

Others respond:
Lawsuits turn companies and their employees into
enemies

The outcome of legal action is always uncertain

Little useful code has come that way

It is better to work with engineers and change
companies from within

We have had great success without lawsuits

Corporate support 4.2..

Intel 10,933 14.3%
unknown 5,682 7.4%
Red Hat 5,625 7.4%
none 4,643 6.1%
Linaro 3,544 4.6%
Samsung 3.089 4.0%
IBM 2,337 3.1%
SUSE 2,123 2.8%
AMD 1,629 2.1%
Renesas Electronics 1,514 2.0%
consultants 1,456 1.9%
Google 1,428 1.9%

Another way to look at it

1) Code for existing devices eventually

 — or —

2) Support from companies indefinitely?

How do we best ensure the success
of Linux and free software?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

