
[RFC] Landlock LSM: Unprivileged sandboxing

Mickaël Salaün

September 29, 2016

1 / 12



Goal: restrict processes without needing root privileges

Examples

I files beneath a list of directories

I bind to a range of ports

Append restrictions

I stackable LSM

I global system view

I without SUID and complex brokers

What is concerned?

I applications with built-in sandboxing

I sandboxing managers

2 / 12



Goal: restrict processes without needing root privileges

Examples

I files beneath a list of directories

I bind to a range of ports

Append restrictions

I stackable LSM

I global system view

I without SUID and complex brokers

What is concerned?

I applications with built-in sandboxing

I sandboxing managers

2 / 12



Goal: restrict processes without needing root privileges

Examples

I files beneath a list of directories

I bind to a range of ports

Append restrictions

I stackable LSM

I global system view

I without SUID and complex brokers

What is concerned?

I applications with built-in sandboxing

I sandboxing managers

2 / 12



How do we use Landlock?

Process hierarchy (application)

1. create or receive Landlock rules

2. attach them to the current process via seccomp(2)

cgroup (container)

1. create Landlock rules

2. open a cgroup v2 directory (e.g. /sys/fs/cgroup/sandboxed)

3. attach the rules to this cgroup via bpf(2)

4. migrate processes into this cgroup

Demo

3 / 12



How do we use Landlock?

Process hierarchy (application)

1. create or receive Landlock rules

2. attach them to the current process via seccomp(2)

cgroup (container)

1. create Landlock rules

2. open a cgroup v2 directory (e.g. /sys/fs/cgroup/sandboxed)

3. attach the rules to this cgroup via bpf(2)

4. migrate processes into this cgroup

Demo

3 / 12



How do we use Landlock?

Process hierarchy (application)

1. create or receive Landlock rules

2. attach them to the current process via seccomp(2)

cgroup (container)

1. create Landlock rules

2. open a cgroup v2 directory (e.g. /sys/fs/cgroup/sandboxed)

3. attach the rules to this cgroup via bpf(2)

4. migrate processes into this cgroup

Demo

3 / 12



Why Landlock?

Why unprivileged access control?

I prevent privilege escalation

I minimize risk of sandbox escape

I same approach as Seatbelt/XNU Sandbox and OpenBSD Pledge

Why existing features do not fit in with this model?

I SELinux, AppArmor, Smack or Tomoyo

I seccomp-BPF

I (user) namespaces

4 / 12



Why Landlock?

Why unprivileged access control?

I prevent privilege escalation

I minimize risk of sandbox escape

I same approach as Seatbelt/XNU Sandbox and OpenBSD Pledge

Why existing features do not fit in with this model?

I SELinux, AppArmor, Smack or Tomoyo

I seccomp-BPF

I (user) namespaces

4 / 12



Needs for Landlock

Flexible and dynamic rules

I express a wide range of restrictions

I extend over time

Constraints for an unprivileged access control

I minimal attack surface

I prevent DoS

I do not leak sensitive kernel data

I avoid confused deputy attack

I multiple independent and stackable rules

5 / 12



Needs for Landlock

Flexible and dynamic rules

I express a wide range of restrictions

I extend over time

Constraints for an unprivileged access control

I minimal attack surface

I prevent DoS

I do not leak sensitive kernel data

I avoid confused deputy attack

I multiple independent and stackable rules

5 / 12



Using eBPF to express access rules

extended Berkeley Packet Filter

I in-kernel bytecode machine:
I optimized to be easily JITable
I arithmetic operations, comparisons, jump forward, function calls
I restricted memory read/write (i.e. program context and stack)
I exchange data through maps between eBPF programs and userland
I a program return a 32-bit value

I static program verification at load time:
I memory access checks
I register typing and tainting
I pointer leak restrictions

I widely used in the kernel: network filtering, tracing. . .

6 / 12



How does Landlock works?

LSM hooks

I atomic security checks (e.g. file permission)

I can be called multiple times in a syscall

Landlock rules

I a rule is tied to one LSM hook

I some LSM hook arguments available in the eBPF program context

I use maps to store kernel object references (e.g. struct file)

I dedicated functions to compare kernel objects

7 / 12



How does Landlock works?

LSM hooks

I atomic security checks (e.g. file permission)

I can be called multiple times in a syscall

Landlock rules

I a rule is tied to one LSM hook

I some LSM hook arguments available in the eBPF program context

I use maps to store kernel object references (e.g. struct file)

I dedicated functions to compare kernel objects

7 / 12



New eBPF features used by Landlock

Map of handles

I describe a kernel object from userland

I evaluation when updating an entry

File system checker functions (eBPF helpers)

I bpf landlock cmp fs beneath with struct file(...)

I bpf landlock cmp fs prop with struct file(...)

Program subtype

I hook ID

I access bitfield tied to capabilities

cgroups attachment (by Daniel Mack)

I extend bpf(2) to be able to tie an eBPF program to a cgroup

8 / 12



New eBPF features used by Landlock

Map of handles

I describe a kernel object from userland

I evaluation when updating an entry

File system checker functions (eBPF helpers)

I bpf landlock cmp fs beneath with struct file(...)

I bpf landlock cmp fs prop with struct file(...)

Program subtype

I hook ID

I access bitfield tied to capabilities

cgroups attachment (by Daniel Mack)

I extend bpf(2) to be able to tie an eBPF program to a cgroup

8 / 12



New eBPF features used by Landlock

Map of handles

I describe a kernel object from userland

I evaluation when updating an entry

File system checker functions (eBPF helpers)

I bpf landlock cmp fs beneath with struct file(...)

I bpf landlock cmp fs prop with struct file(...)

Program subtype

I hook ID

I access bitfield tied to capabilities

cgroups attachment (by Daniel Mack)

I extend bpf(2) to be able to tie an eBPF program to a cgroup

8 / 12



New eBPF features used by Landlock

Map of handles

I describe a kernel object from userland

I evaluation when updating an entry

File system checker functions (eBPF helpers)

I bpf landlock cmp fs beneath with struct file(...)

I bpf landlock cmp fs prop with struct file(...)

Program subtype

I hook ID

I access bitfield tied to capabilities

cgroups attachment (by Daniel Mack)

I extend bpf(2) to be able to tie an eBPF program to a cgroup

8 / 12



A Landlock rule for the file permission hook (C)

1 err = bpf_landlock_cmp_fs_beneath (0, map_fs ,

2 BPF_MAP_ARRAY_OP_OR , ctx ->args [0]);

3 if (!err)

4 return 0;

5 return EACCES;

9 / 12



A Landlock rule for the file permission hook (eBPF)

1 /* specify an option , if any */

2 BPF_MOV32_IMM(BPF_REG_1 , 0),

3 /* handles to compare with */

4 BPF_LD_MAP_FD(BPF_REG_2 , map_fs),

5 BPF_MOV64_IMM(BPF_REG_3 , BPF_MAP_ARRAY_OP_OR),

6 /* hook argument (struct file) */

7 BPF_LDX_MEM(BPF_DW , BPF_REG_4 , BPF_REG_6 ,

8 offsetof(struct landlock_data , args [0])) ,

9 /* checker function */

10 BPF_EMIT_CALL(BPF_FUNC_landlock_cmp_fs_beneath),

11 /* if the file is beneath a handle from the map */

12 BPF_JMP_IMM(BPF_JNE , BPF_REG_0 , 0, 1),

13 BPF_EXIT_INSN (),

14 /* deny by default , if any error */

15 BPF_MOV32_IMM(BPF_REG_0 , EACCES),

16 BPF_EXIT_INSN (),

10 / 12



Two complementary ways to enforce Landlock rules

Process hierarchy: application with built-in sandboxing

I restrict the current process and its future children

I use the seccomp(2) interface

I native use of no new privs

cgroup: container sandboxing

I restrict processes from a cgroup

I complementary to rules for process hierarchies

I handle cgroup delegation with no new privs

11 / 12



Two complementary ways to enforce Landlock rules

Process hierarchy: application with built-in sandboxing

I restrict the current process and its future children

I use the seccomp(2) interface

I native use of no new privs

cgroup: container sandboxing

I restrict processes from a cgroup

I complementary to rules for process hierarchies

I handle cgroup delegation with no new privs

11 / 12



Landlock LSM: Wrap-up

Unprivileged sandboxing

I use eBPF programs as access control rules

I applied through seccomp or tied to a cgroup

I can handle privileged features

I limited attack surface

I efficient and flexible

https://lwn.net/Articles/700607

mic@digikod.net

@l0kod

12 / 12

https://lwn.net/Articles/700607
mailto:mic@digikod.net
https://twitter.com/l0kod

