

State of DRM
(graphics driver subsystem, not the other thing)

Daniel Vetter, Intel OTC
Kernel Recipes 2016, Paris

tl;dr;

world domination progressing according to plan

kerneldoc

● much pretty, such awesome

● sphinx+rst+/scripts/kernel­doc

● https://dri.freedesktop.org/docs/drm/

kerneldoc … for DRM!

● everything atomic, see later
● drm_crtc.c split into ~10 files and docs added
● and more

dungeons&dragons

● DRI1 legacy drivers still exist
● 10+ years of bad UAPI and creative root holes

● now fully hidden behind drm_legacy_*
● … and core de-midlayered

IGT gpu tests

● port Intel tests to be generic
● starting to get used on many drivers
● plus CI systems!
● https://dri.freedesktop.org/docs/drm/gpu/drm-

uapi.html#validating-changes-with-igt

userspace requirements

● require open source for any UAPI
● https://dri.freedesktop.org/docs/drm/gpu/drm-

uapi.html#open-source-userspace-
requirements

atomic display driver

● check/commit semantics
● flicker-free commit
● because hw
● because direct scanout saves power

atomic advances

● 20 drivers and counting, 2-3 more per release
● lots of small polish and boiler-plate removal
● docs, docs, docs
● modular helper library now fully proven

one atomic to rule them all

● drm_hwcomposer, for Android
● CrOS&Ozone, using wayland
● all the waylands

atomic future

● trouble with some legacy use-cases, cursors
● buffer allocation needs more UAPI
● benchmark mode

generic fbdev defio

● manual upload display to save memory bw
● FBDEV now remapped to KMS
● … dirty rectangle still missing for flips

simple display pipeline helper

● simple pipe + 1 connectors
● based on atomic, without the complexity
● DRM now (strictly) better than FBDEV

fences

● struct completion, but for DMA

● implicit: kernel takes care
● explicit: userspace passes fences around

● kernel-internally a struct fence

implicit fencing

● reservation_object on dma_buf
● TTM (amd/nouveau) always supported it
● support finally rolling out everywhere else
● for Linux desktop (both X&Wayland)

explicit fencing

● struct sync_file, exported as an FD

● more control for userspace
● less complexity in (vendor tree) drivers needed
● for Android

explicit fencing for rendering

● userspace fences fully destaged in 4.9
● EGL_ANDROID_native_sync for

msm/freedreno in 4.9 and mesa-next
● interaction with implicit fencing is tricky

explicit fencing for atomic KMS

● Google made HWC2 to suit upstream
● blocked by embargo, hopefully 4.10
● drm_hwcomposer has support
● for details attend LPC

rsn Android on upstream*

* without a joke** of a graphics stack

** I'm biased ;-)

rendering?

● 2+1 vendor supported open drivers
● 1+1+1 reverse-engineered drivers
● plus virtual ones
● still dire :(

summary

● atomic rules them all
● docs, tests and lots of cleanup
● closed all major gaps for writing display drivers
● cross-driver fence for everyone
● even rendering shows some (slow) progress

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21

