

Understanding a Real-Time System

More than just a kernel

Steven Rostedt
rostedt@goodmis.org
srostedt@redhat.com

mailto:rostedt@goodmis.org

What is Real-Time?

Deterministic results

Repeatable results

Doing what you expect when you expect it

No unbounded latency

Can calculate worst case scenarios

All environments are Real-Time.

What is Real Fast?

Hot cache

Look ahead features

Paging

Translation Lookaside Buffer (TLB)

Least interruptions

Optimize the most likely case

Transactional Memory

Real-Time vs Real-Fast

Real-Time Real-Fast

The System

HARDWARE

Kernel

Library

Application

BIOS

The Hardware

The foundation

If this isn't deterministic, forget the rest

Memory Cache

Branch Prediction

NUMA

Hyper-Threading

TLB

Transactional Memory

SMI

CPU Frequency scaling

Memory Cache

Try to run tests with cold cache

Try to find the worse case scenario

If you system works without cache, it should
work with cache

Except for race conditions (You just can't win can you?)

Non cache is more deterministic

Cache may allow the “slower” path to run faster

Memory Cache

Branch Prediction

CPU recognizes branch patterns

Optimizes the pipeline

But what happens when logic changes?

Branch Prediction

Good:
 Performance counter stats for './deadline_test -c 0,3':

 15309.175906 task-clock (msec) # 1.272 CPUs utilized (100.00%)
 16,693 context-switches # 0.001 M/sec (100.00%)
 6 cpu-migrations # 0.000 K/sec (100.00%)
 220 page-faults # 0.014 K/sec (100.00%)
 45,336,201,800 cycles # 2.961 GHz (100.00%)
 27,839,671,679 stalled-cycles-frontend # 61.41% frontend cycles idle (100.00%)
 <not supported> stalled-cycles-backend
 24,654,001,731 instructions # 0.54 insns per cycle
 # 1.13 stalled cycles per insn (100.00%)
 5,846,443,551 branches # 381.891 M/sec (100.00%)
 798,866 branch-misses # 0.01% of all branches (100.00%)
 15,143,395,012 L1-dcache-loads # 989.171 M/sec (100.00%)
 6,830,685 L1-dcache-load-misses # 0.05% of all L1-dcache hits (100.00%)
 5,646,962 LLC-loads # 0.369 M/sec (100.00%)
 <not supported> LLC-load-misses

 12.037594790 seconds time elapse

Branch Prediction

Bad:
 Performance counter stats for './deadline_test -c 0,3':

 9191.898036 task-clock (msec) # 0.763 CPUs utilized (100.00%)
 16,693 context-switches # 0.002 M/sec (100.00%)
 9 cpu-migrations # 0.001 K/sec (100.00%)
 219 page-faults # 0.024 K/sec (100.00%)
 22,043,401,852 cycles # 2.398 GHz (100.00%)
 13,531,252,221 stalled-cycles-frontend # 61.38% frontend cycles idle (100.00%)
 <not supported> stalled-cycles-backend
 12,012,005,499 instructions # 0.54 insns per cycle
 # 1.13 stalled cycles per insn (100.00%)
 2,841,672,774 branches # 309.150 M/sec (100.00%)
 4,689,983 branch-misses # 0.17% of all branches (100.00%)
 7,339,066,676 L1-dcache-loads # 798.428 M/sec (100.00%)
 6,443,901 L1-dcache-load-misses # 0.09% of all L1-dcache hits (100.00%)
 5,131,751 LLC-loads # 0.558 M/sec (100.00%)
 <not supported> LLC-load-misses

 12.040237863 seconds time elapsed

NUMA

Memory speeds dependent on CPU

Need to organize the tasks

Make sure RT tasks always have their memory in
one place

Hyper-Threading

Intel processor

One execution unit

One system bus

One cache

Two sets of registers

Two sets of CPU pipelines

Execution engine switches between them on stall

Recommended to disable for RT

Hyper-Threading

Registers Registers

Pipeline Pipeline

CPU Cache

CPU Core

Translation Lookaside Buffer (TLB)

Page Tables Pages

TLB

Transactional Memory

Allows for parallel actions in the same critical
section

Backs out when the same memory is touched

Restart the transaction or take another path

System Management Interrupt (SMI)

Puts processor into System Management Mode
(SMM)

HW functionality done in software

Check CPU temperature Change frequency

Perform ECC memory scans

Causes the system to stop what it was doing

CPU Frequency Scaling

Battery saving

Run at full blast!

CPU Idle

Run a polling loop

Don't go into a deep sleep

Comes out groggy

The Kernel

HARDWARE

Kernel

Library

Application

BIOS

RT Kernel

Threaded interrupts

System management threads

High res timers

CPU Isolation

No HZ

No HZ Full

Normal Interrupts

Task

interrupt
device handler

Threaded Interrupts

Task

interrupt

device handler

sleep

Mask interrupt
wake up device thread

Threaded Interrupts

User tasks can run higher priority than interrupts

Set required interrupts higher than your task

i.e. Don't poll waiting for network if task is higher
priority than networking interrupts

Know your system!

Soft Interrupts

With PREEMPT_RT, softirqs run from the context
of who raises them

Network irq will run network softirqs

Except for softirqs raised by real Hard interrupts

RCU

Timers

Run in ksoftirqd

System Management Threads

RCU

Watchdog

Migrate

kworker

ksoftirqd

posixcputimer

Timers

setitimer()

Requires ksoftirqd to run (on PREEMPT_RT)

timer_create() / timer_settime()

Timer interrupt wakes up posixcputimer thread

Uses high resolution timer kernel infrastructure

Sends via signals

CPU Isolation

Kernel parameter: isolcpus=1-3

no longer the preferred method

cpusets

cd /sys/fs/cgroup/cpuset/

echo 1 > cpuset.cpu_exclusive

mkdir myset

echo 1-3 > myset/cpuset.cpus

echo 1 > myset/cpuset.cpu_exclusive

echo $$ > myset/tasks

NO_HZ

CONFIG_NO_HZ

When CPU is idle, turn off timers

Lets CPUs go into a deep sleep

Great for power savings

Sucks for latency (deeper sleep, longer wakeup)

NO HZ FULL

CONFIG_NO_HZ_FULL

Keep kernel processing from bothering tasks

Kernel parameter: nohz_full=3 rcu_nocbs=3

Works when only one task is scheduled

Adds overhead to kernel entry and exit

The Application / Library

HARDWARE

Kernel

Library

Application

BIOS

RT Tasks

memory locking

Priority inheritance locks

Task and interrupt thread dependencies

Migration is different

memory locking

mlockall()

Lock in memory to prevent page faults

MCL_CURRENT

Lock in all current pages

MCL_FUTURE

Lock in pages for heap and stack and shared memory

Careful about how much you lock in!

Priority Inheritance Locking

Prevents Unbounded Latency

For threaded applications

pthread_mutexattr_setprotocol (&attr,
PTHREAD_PRIO_INHERIT)

Unbounded Latency

preempted preempted

A

B

C

blocked

Priority Inheritance

preempted releases lock

A

B

C

wakes up

blocked sleeps

Task and interrupt thread
dependencies

Understand how threads interact

Know your interrupt threads

cpuposixtimer

Workqueues

Beware of pitfalls

Real-time vs Multi processors

Migration clears Caches (memory and TLB)

The RT kernel gives you a “best effort”

Your mileage may vary

Tries to run the highest prio tasks on all CPUs it can

Can cause unexpected results for Round Robin

Round Robin

CPU 1 CPU 2

RR Prio 5
50 %

RR Prio 5
50 %

RR Prio 5
100 %

SCHED_DEADLINE

Earliest Deadline First

Guaranteed amount of CPU time per task

Relatively new in Linux

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

