
Metrics are money
Aurélien “beorn” Rougemont

Well. before that.

whoami(1)

40 years old nerd

Been pushing buttons on a C64 since i was 9

opensource software user since 1996 (slackware 3.1)

Hacked kernel code for the first time in 1999 (ISDN modem)

Wrote a few patches for linux/opensolaris/FreeBSD kernels over the past 19
years

Contributed a few patches for various observability projects

On-call for the last 19 years

Woken up for stupid things for 19 years…

Been happily working for synthesio.com for 2.5 years

job(1)

talk(1)

<Friend> "wow congratulations on making it to
the KR conferences"

<Me> "Thanks !"

<Friend> "i was looking at the KR speakers list.
I saw the usual legends. And you. Good luck with
that. Sincerely"

This is not meant to be a public shaming session

Names and bugs were voluntarily removed

Explaining these bugs/patches to most of you would be…
incongruous

You probably wrote or validated the bug… and the fix

motd(5)

Operations

alarm(2)

500 HTTP error

non zero shell return code

Segfault

Kernel panic

OOM

CRC errors

Network problems

No data

No graph

[...]

sleep(1)

HTTP 200 error

Failed shell script returning 0

Segfault hidden by a process supervisor

Silent data corruption

Unknown states

Pattern change

No timeout on probe

[...]

Peter Drucker famously said :
“what gets measured gets managed.”

stat(1)

dash(1)

keepalived(8)

Just a sense of scale

prometheus(1) con 2018

Fastly
114 prometheus servers
28.4M timeseries
2.2M samples/s

Cloudflare
267 prometheus servers

Uber
400-600M datapoints/s pre-aggregation
20M stored datapoints per second
6.6B unique metric IDs
9k grafana dash
30B datapoints

free(1)
So ops guys brains working memory are saturated, among other things, by metrics

What if… Even the most basic metrics weren’t what you thought they’d be ?

What if… The same metric did not mean the same from a server to another ?

What if… We were all wrong most part of the time ?

Now real life stories

Server usage...

top(1)

I have played a game with other mid to senior ops guys : 2 out of 10 were
almost correct.

“Load averages are an industry-critical metric – my company spends millions
auto-scaling cloud instances based on them and other metrics – but on Linux
there's some mystery around them.” Brendan Gregg (2017)

After all it only took around 12 screens to Brendan Gregg to explain linux
load average history.

Oh and good news, linux computes load differently than other kernel/OS

http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html

Network packets...

irssi(1) /query foo

<foo> is hired, replaces a dying home-made linux-based switch with a very
common one

<foo> adds metrics to this brand new switch and figures out something is wrong

Switch and server are absolutely not giving the same results : at least 50%
drop on all network tx/rx metrics during the usual benchmarks

<foo> examines the dashboard configuration : there’s also a max() function but
that was just an aggravating factor not the root cause

<foo> beorn you know collectd-fu right ?

vim(1) ~/collectd core/plugin code

Collectd code was pretty straight forward

Collectd reads data from /proc/net/dev

No voodoo magic here

history(3)

The server and the linux-based-old-switch were running the exact same old
linux kernel version

And could not be simply upgraded because of proprietary drivers of specific
components

proc(5) /proc/net/dev

When this story happens there was almost no documentation for /proc/net/dev

Gladly there was this old email that gave some useful hints.

mail(1)

> How can I find out the /proc/net info
>
> eg: softnet_stat is for what purpose

Much of this is only well-documented in the code. Here's an attempt
at interpreting softnet_stat [no guarantee that it is correct; read the code!]:

% softnet_stat.sh
cpu total dropped squeezed collision
 0 1794619684 0 346 0
 1 36399632 0 74 2

% softnet_stat.sh -h
usage: softnet_stat.sh [-h]

[...]

mutt(1)

Output column definitions:
 cpu # of the cpu

total # of packets (not including netpoll) received by the interrupt handler
 There might be some double counting going on:
 net/core/dev.c:1643: __get_cpu_var(netdev_rx_stat).total++;
 net/core/dev.c:1836: __get_cpu_var(netdev_rx_stat).total++;
 I think the intention was that these were originally on separate
 receive paths ...

 dropped # of packets that were dropped because netdev_max_backlog was exceeded

 squeezed # of times ksoftirq ran out of netdev_budget or time slice with work
 remaining

collision # of times that two cpus collided trying to get the device queue lock.

man(1) kernel/drivers

git-log(1)

git log --pretty=oneline --abbrev-commit |grep igb| grep stats
55c05dd0295d igbvf: Use net_device_stats from struct net_device
e66c083aab32 igb: fix stats for i210 rx_fifo_errors
3dbdf96928dc igb: Fix stats output on i210/i211 parts.
0a915b95d67f igb: Add stats output for OS2BMC feature on i350 devices
12dcd86b75d5 igb: fix stats handling
43915c7c9a99 igb: only read phy specific stats if in internal phy mode
128e45eb61b9 igb: Rework how netdev->stats is handled
645a3abd73c2 igb: Remove invalid stats counters
3f9c01648146 igb: only process global stats in igb_update_stats
04a5fcaaf0e1 igb: move alloc_failed and csum_err stats into per rx-ring stat
231835e4163c igb: Fix erroneous display of stats by ethtool -S
8d24e93309d6 igb: Use the instance of net_device_stats from net_device.
cc9073bbc901 igb: remove unused temp variable from stats clearing path
3ea73afafb8c igb: Record host memory receive overflow in net_stats
04fe63583d46 igb: update stats before doing reset in igb_down
e21ed3538f19 igb: update ethtool stats to support multiqueue

git-commit(1)

/*
 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
 * ENOBUFS might not be good (it's not tunable per se), but otherwise
 * we don't have a good statistic (IpOutDiscards but it can be too many
 * things). We could add another new stat but at least for now that
 * seems like overkill.
 */

ethtool(8)

Over the years the Linux networking stack had hoarded:

● Tens of (cool) features (GRO, GSO, RPS, RFS, …)
● Tens of drivers
● Tons of code-paths
● Multiple thousand sysctl entries
● A lot of bugs

Manufacturer’s tech document was 1200 pages long, and is probably bigger today

Documentation was not what it is today

sha512sum(1)

To sum it up

● notice the problem
● Fix the graph configuration (bad aggr)
● start reading the userland stats collecting (collectd here)
● realize and make sure the bug was not there
● read your kernel/driver code
● realize the bug is really in the code path that /proc/net/dev hits
● read the 1200 pages tech specs from the manufacturer
● find a few related patches
● rebuild the kernel/driver only 4 times (we were lucky)
● And just reboot production servers for weeks

All that just to read valid tx.rx packets counters !

bc(1)

<foo> Last year based on these metrics they doubled network
capacity for more than 2.8M euros

Resellers and
Manufacturers...

We had many servers of a validated type with 10Gbps ixgbe nics

According to capacity planning we order a 240 servers batch

Linux TCP/IP network statistics are bad : tcp retransmits, latencies, …

The new switch metrics were green

Linux did not have signal related statistics for fiber NICs

Another brand/model of SFP+ worked just fine

netstat(1)

mutt(1) reseller

<reseller> everything is fine

<me> if only we’ve had those SFP+ DOM registers in kernel/ethtool…

<CTO> you have 10 full days to prove them wrong

<me> Erm it’s the network stack we’re talking about and i’m no real kernel
dev

<CTO> That’s why you have 10 full days to prove them wrong

Read everything i could find about optical signal, SFP+ and DOM statistics

Found a microrouter project named bifrost doing just this with a 2.6 kernel
(2012)

Their Patches were never pushed upstream

We needed it to run on 3.4 kernels for features and hardware compatibility

Emailed the guys about a 3.4 patch: no luck

Let’s port this to 3.4

links(1)

The network API had major changes between 2.6 and 3.4 on this particular part.

Ended up rewriting the patchset (kernel + ethtool) entirely in 5 days

Patch worked in production for a 3-4 years without a glitch

vim(1) patchset.diff

ethtool -D eth0

Int-Calbr: Avr RX-Power: Alarm & Warn: TX_DISABLE: TX_FAULT: RX_LOS:
RATE_SELECT MON: RATE_SELECT: Wavelength: 850 nm
Alarms, warnings in beginning of line, Ie. AH = Alarm High, WL == Warn
Low etc

Temp: 45.7 C Thresh: Lo: -45.0/-40.0 Hi: 115.0/125.0 C
Vcc: 3.32 V Thresh: Lo: 2.7/2.9 Hi: 3.7/3.9 V
Tx-Bias: 6.6 mA Thresh: Lo: 1.0/2.0 Hi: 12.0/15.0 mA
TX-pwr: -2.9 dBm (0.52 mW) Thresh: Lo: -10.0/-8.3 Hi: 0.8/2.0 dBm
RX-pwr: -1.9 dBm (0.64 mW) Thresh: Lo: -16.0/-14.2 Hi: 1.8/3.0 dBm

Proud and happy i wrote an email to someone “doing things in the kernel”

<kernelguy> “$#!$#!$$@%$#%#!$%#%@$”

<me> “So what should i fix ?”

<End Of Discussion>

git-format-patch(1)

After adding the ethtool output and the patchset into the reseller’s case he
agreed to change the incompatible SFP+ after only 5 days of hard work

480 brand new SFP+ arrived. We changed the faulty SFP+ for weeks.

And that was it

Roughly 200K euros were saved with these metrics

hledger(1)

Disks...

iozone(1)

In a hosting company we built ZFS based SAN/NAS

<coworker> last batch of servers have serious storage
performances issues under load

<SRE> alright let’s dig

sha256sum(1)

iostat -E c0t5000C5004124B687d0
sd31 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
Vendor: SEAGATE Product: ST2000NM0001 Revision: PS04 Serial No: Z1P1HECD
Size: 2000.40GB <2000398934016 bytes>
Media Error: 0 Device Not Ready: 0 No Device: 0 Recoverable: 0
Illegal Request: 0 Predictive Failure Analysis: 0

iostat -E c11t50014EE3000E9080d0
sd22 Soft Errors: 0 Hard Errors: 0 Transport Errors: 0
Vendor: WD Product: WD2000FYYG Revision: D1B3 Serial No: WMAWP0192044
Size: 2000.40GB <2000398934016 bytes>
Media Error: 0 Device Not Ready: 0 No Device: 0 Recoverable: 0
Illegal Request: 4 Predictive Failure Analysis: 0

Disk had the same labels, same tech specs, but not exactly the
same physical look

alpine(1)

<me> Sir it is not the same disk brand/model

<reseller> we do not guarantee anything else that tech specs

<me> [...] Please do something !

orion(1)

Device: rrqm/s wrqm/s r/s w/s rMB/s wMB/s avgrq-sz avgqu-sz await svctm %util
sde 0.00 0.00 1.00 246.00 0.00 123.00 1019.89 124.77 127.80 4.05 100.10
sdc 0.00 0.00 1.00 104.00 0.00 52.00 1014.32 120.05 896.32 9.52 100.00

After extensive profiling we are able to reproduce the
problematic workload

Which happens to be a very important workload for ZFS

sup(1)

<manufacturer> Our test suite shows that the disks you have sent are fine

<me> except they are not. see the iostat output

[nothing for 1 week]

smartctl(1)
 /dev/sde: SEAGATE ST2000NM0001 PS04
 Direct access device specific parameters: WP=0 DPOFUA=1
Read write error recovery [rw] mode page:
 AWRE 1 [cha: y, def: 1, sav: 1] Automatic write reallocation enabled
 ARRE 1 [cha: y, def: 1, sav: 1] Automatic read reallocation enabled
 TB 0 [cha: y, def: 0, sav: 0] Transfer block
 RC 0 [cha: y, def: 0, sav: 0] Read continuous
 EER 0 [cha: y, def: 0, sav: 0] Enable early recovery
 PER 0 [cha: y, def: 0, sav: 0] Post error
 DTE 0 [cha: y, def: 0, sav: 0] Data terminate on error
 DCR 0 [cha: y, def: 0, sav: 0] Disable correction
 RRC 20 [cha: y, def: 20, sav: 20] Read retry count
 COR_S 255 [cha: n, def:255, sav:255] Correction span (obsolete)
 HOC 0 [cha: n, def: 0, sav: 0] Head offset count (obsolete)
 DSOC 0 [cha: n, def: 0, sav: 0] Data strobe offset count (obsolete)
 TPERE 0 [cha: n, def: 0, sav: 0] Thin provisioning error reporting enabled
 WRC 5 [cha: y, def: 5, sav: 5] Write retry count
 RTL 8000 [cha: y, def:8000, sav:8000] Recovery time limit (ms)
Disconnect-reconnect (SPC + transports) [dr] mode page:
 BFR 0 [cha: n, def: 0, sav: 0] Buffer full ratio
 BER 0 [cha: n, def: 0, sav: 0] Buffer empty ratio
 BIL 0 [cha: n, def: 0, sav: 0] Bus inactivity limit
 DTL 0 [cha: n, def: 0, sav: 0] Disconnect time limit
 CTL 0 [cha: n, def: 0, sav: 0] Connect time limit
 MBS 314 [cha: y, def:314, sav:314] Maximum burst size (512 bytes)
 EMDP 0 [cha: n, def: 0, sav: 0] Enable modify data pointers
 FA 0 [cha: n, def: 0, sav: 0] Fair arbitration
 DIMM 0 [cha: n, def: 0, sav: 0] Disconnect immediate
 DTDC 0 [cha: n, def: 0, sav: 0] Data transfer disconnect control
 FBS 0 [cha: n, def: 0, sav: 0] First burst size (512 bytes)
Format (SBC) [fo] mode page:
 TPZ 48080 [cha: n, def:48080, sav:48080] Tracks per zone
 ASPZ 0 [cha: n, def: 0, sav: 0] Alternate sectors per zone
 ATPZ 0 [cha: n, def: 0, sav: 0] Alternate tracks per zone
 ATPLU 896 [cha: n, def:896, sav:896] Alternate tracks per logical unit
 SPT 1220 [cha: n, def:1220, sav:1220] Sectors per track
 DBPPS 512 [cha: n, def:512, sav:512] Data bytes per physical sector
 INTLV 1 [cha: n, def: 1, sav: 1] Interleave

 TSF 156 [cha: n, def:156, sav:156] Track skew factor
 CSF 38 [cha: n, def: 38, sav: 38] Cylinder skew factor
 SSEC 0 [cha: n, def: 0, sav: 0] Soft sector
 HSEC 1 [cha: n, def: 1, sav: 1] Hard sector
 RMB 0 [cha: n, def: 0, sav: 0] Removable
 SURF 0 [cha: n, def: 0, sav: 0] Surface
Rigid disk (SBC) [rd] mode page:
 NOC 249000 [cha: n, def:249000, sav:249000] Number of cylinders
 NOH 8 [cha: n, def: 8, sav: 8] Number of heads
 SCWP 0 [cha: n, def: 0, sav: 0] Starting cylinder for write
precompensation
 SCRWC 0 [cha: n, def: 0, sav: 0] Starting cylinder for reduced write
current
 DSR 0 [cha: n, def: 0, sav: 0] Device step rate
 LZC 0 [cha: n, def: 0, sav: 0] Landing zone cylinder
 RPL 0 [cha: n, def: 0, sav: 0] Rotational position locking
 ROTO 0 [cha: n, def: 0, sav: 0] Rotational offset
 MRR 7200 [cha: n, def:7200, sav:7200] Medium rotation rate (rpm)
Verify error recovery (SBC) [ve] mode page:
 V_EER 0 [cha: y, def: 0, sav: 0] Enable early recovery
 V_PER 0 [cha: y, def: 0, sav: 0] Post error
 V_DTE 0 [cha: y, def: 0, sav: 0] Data terminate on error
 V_DCR 0 [cha: y, def: 0, sav: 0] Disable correction
 V_RC 20 [cha: y, def: 20, sav: 20] Verify retry count TSF 156 [cha:
n, def:156, sav:156] Track skew factor

 V_COR_S 255 [cha: n, def:255, sav:255] Verify correction span (obsolete)
 V_RTL 8000 [cha: y, def:8000, sav:8000] Verify recovery time limit (ms)
Caching (SBC) [ca] mode page:
 IC 0 [cha: y, def: 0, sav: 0] Initiator control
 ABPF 0 [cha: n, def: 0, sav: 0] Abort pre-fetch
 CAP 0 [cha: y, def: 0, sav: 0] Caching analysis permitted
 DISC 1 [cha: n, def: 1, sav: 1] Discontinuity
 SIZE 0 [cha: n, def: 0, sav: 0] Size enable
 WCE 0 [cha: y, def: 0, sav: 0] Write cache enable
 MF 0 [cha: n, def: 0, sav: 0] Multiplication factor
 RCD 0 [cha: y, def: 0, sav: 0] Read cache disable
 DRRP 0 [cha: n, def: 0, sav: 0] Demand read retention priority
 WRP 0 [cha: n, def: 0, sav: 0] Write retention priority
 DPTL -1 [cha: n, def: -1, sav: -1] Disable pre-fetch transfer length
 MIPF 0 [cha: y, def: 0, sav: 0] Minimum pre-fetch
 MAPF -1 [cha: y, def: -1, sav: -1] Maximum pre-fetch
 MAPFC -1 [cha: n, def: -1, sav: -1] Maximum pre-fetch ceiling
 FSW 1 [cha: n, def: 1, sav: 1] Force sequential write
 LBCSS 0 [cha: n, def: 0, sav: 0] Logical block cache segment size
 DRA 0 [cha: y, def: 0, sav: 0] Disable read ahead
 NV_DIS 0 [cha: n, def: 0, sav: 0] Non-volatile cache disable
 NCS 32 [cha: n, def: 32, sav: 32] Number of cache segments
 CSS 0 [cha: n, def: 0, sav: 0] Cache segment size
Control [co] mode page:
 TST 0 [cha: n, def: 0, sav: 0] Task set type
 TMF_ONLY 0 [cha: n, def: 0, sav: 0] Task management functions only

 D_SENSE 0 [cha: y, def: 0, sav: 0] Descriptor format sense data
 GLTSD 0 [cha: y, def: 0, sav: 0] Global logging target save disable
 RLEC 0 [cha: y, def: 0, sav: 0] Report log exception condition
 QAM 0 [cha: y, def: 0, sav: 0] Queue algorithm modifier
 QERR 0 [cha: y, def: 0, sav: 0] Queue error management
 RAC 0 [cha: n, def: 0, sav: 0] Report a check
 UA_INTLCK 0 [cha: n, def: 0, sav: 0] Unit attention interlocks control
 SWP 0 [cha: n, def: 0, sav: 0] Software write protect
 ATO 0 [cha: n, def: 0, sav: 0] Application tag owner
 TAS 0 [cha: n, def: 0, sav: 0] Task aborted status
 AUTOLOAD 0 [cha: n, def: 0, sav: 0] Autoload mode
 BTP 0 [cha: n, def: 0, sav: 0] Busy timeout period (100us)
 ESTCT 18500 [cha: n, def:18500, sav:18500] Extended self test completion time
(sec)
Protocol specific logical unit [pl] mode page:
 LUPID 6 [cha: n, def: 6, sav: 6] Logical unit's (transport) protocol
identifier
Protocol specific port [pp] mode page:
 PPID 6 [cha: n, def: 6, sav: 6] Port's (transport) protocol identifier
Power condition [po] mode page:
 STANDBY_Y 0 [cha: n, def: 0, sav: 0] Standby_y timer enabled
 IDLE_C 0 [cha: n, def: 0, sav: 0] Idle_c timer enabled
 IDLE_B 0 [cha: n, def: 0, sav: 0] Idle_b timer active
 IDLE 1 [cha: y, def: 1, sav: 1] Idle timer enabled
 STANDBY 0 [cha: y, def: 0, sav: 0] Standby timer active
 ICT 5 [cha: y, def: 5, sav: 5] Idle condition timer (100 ms)
 SCT 36000 [cha: n, def:36000, sav:36000] Standby condition timer (100 ms)
Informational exceptions control [ie] mode page:
 PERF 0 [cha: y, def: 0, sav: 0] Performance (impact of ie operations)
 EBF 0 [cha: n, def: 0, sav: 0] Enable background function
 EWASC 0 [cha: y, def: 0, sav: 0] Enable warning
 DEXCPT 0 [cha: y, def: 0, sav: 0] Disable exceptions
 TEST 0 [cha: y, def: 0, sav: 0] Test (simulate device failure)
 EBACKERR 0 [cha: n, def: 0, sav: 0] Enable background (scan + self test)
error reporting
 LOGERR 1 [cha: y, def: 1, sav: 1] Log informational exception errors
 MRIE 6 [cha: y, def: 6, sav: 6] Method of reporting informational
exceptions
 INTT 6000 [cha: y, def:6000, sav:6000] Interval timer (100 ms)
 REPC 0 [cha: n, def: 0, sav: 0] Report count (or Test flag number
[SSC-3])
Background control (SBC) [bc] mode page:
 S_L_FULL 0 [cha: n, def: 0, sav: 0] Suspend on log full
 LOWIR 0 [cha: n, def: 0, sav: 0] Log only when intervention required
 EN_BMS 1 [cha: y, def: 1, sav: 1] Enable background medium scan
 EN_PS 0 [cha: n, def: 0, sav: 0] Enable pre-scan
 BMS_I 336 [cha: y, def:336, sav:336] Background medium scan interval time
(hour)
 BPS_TL 24 [cha: y, def: 24, sav: 24] Background pre-scan time limit (hour)
 MIN_IDLE 250 [cha: y, def:250, sav:250] Minumum idle time before background scan
(ms)
 MAX_SUSP 0 [cha: y, def: 0, sav: 0] Maximum time to suspend background scan
(ms)

:(){ :|:& };:

At the same time they provided us a “fix” firmware

Performances were even better than with the good disk.

Binary diff showed a 1 bit change.

Yes a boolean.

Their firmware was silently enabling write cache (without
battery)

Which is to say the least dangerous

dc(1)

--- st2000nm00001_sdparm.txt 2013-02-28 21:12:15.287433646 +0100
+++ wd2000fyyg_sdparm.txt 2013-02-28 21:12:28.823131392 +0100
@@ -1,102 +1,97 @@
- /dev/sde: SEAGATE ST2000NM0001 PS04
+ /dev/sdc: WD WD2000FYYG D1BB
 Direct access device specific parameters: WP=0 DPOFUA=1
 Read write error recovery [rw] mode page:
- RC 0 [cha: y, def: 0, sav: 0] Read continuous
+ RC 0 [cha: n, def: 0, sav: 0] Read continuous
- RRC 20 [cha: y, def: 20, sav: 20] Read retry count
- COR_S 255 [cha: n, def:255, sav:255] Correction span (obsolete)
+ RRC 255 [cha: y, def:255, sav:255] Read retry count
+ COR_S 0 [cha: n, def: 0, sav: 0] Correction span (obsolete)
- WRC 5 [cha: y, def: 5, sav: 5] Write retry count
+ WRC 255 [cha: y, def:255, sav:255] Write retry count
 Verify error recovery (SBC) [ve] mode page:
- V_RC 20 [cha: y, def: 20, sav: 20] Verify retry count
- V_COR_S 255 [cha: n, def:255, sav:255] Verify correction span (obsolete)
+ V_RC 255 [cha: y, def:255, sav:255] Verify retry count
+ V_COR_S 0 [cha: n, def: 0, sav: 0] Verify correction span (obsolete)
 Caching (SBC) [ca] mode page:
- FSW 1 [cha: n, def: 1, sav: 1] Force sequential write
+ FSW 0 [cha: y, def: 0, sav: 0] Force sequential write
 Informational exceptions control [ie] mode page:
- PERF 0 [cha: y, def: 0, sav: 0] Performance (impact of ie operations)
- EBF 0 [cha: n, def: 0, sav: 0] Enable background function
+ PERF 0 [cha: n, def: 0, sav: 0] Performance (impact of ie operations)
+ EBF 1 [cha: y, def: 1, sav: 1] Enable background function
- EBACKERR 0 [cha: n, def: 0, sav: 0] Enable background (scan + self test)
error reporting
- LOGERR 1 [cha: y, def: 1, sav: 1] Log informational exception errors
+ EBACKERR 0 [cha: y, def: 0, sav: 0] Enable background (scan + self test)
error reporting
+ LOGERR 1 [cha: n, def: 1, sav: 1] Log informational exception errors
- REPC 0 [cha: n, def: 0, sav: 0] Report count (or Test flag number
[SSC-3])
+ REPC 0 [cha: y, def: 0, sav: 0] Report count (or Test flag number
[SSC-3])
 Background control (SBC) [bc] mode page:
- S_L_FULL 0 [cha: n, def: 0, sav: 0] Suspend on log full
- LOWIR 0 [cha: n, def: 0, sav: 0] Log only when intervention required
+ S_L_FULL 0 [cha: y, def: 0, sav: 0] Suspend on log full
+ LOWIR 0 [cha: y, def: 0, sav: 0] Log only when intervention required
- EN_PS 0 [cha: n, def: 0, sav: 0] Enable pre-scan
+ EN_PS 0 [cha: y, def: 0, sav: 0] Enable pre-scan
- BPS_TL 24 [cha: y, def: 24, sav: 24] Background pre-scan time limit (hour)
+ BPS_TL 0 [cha: y, def: 0, sav: 0] Background pre-scan time limit (hour)

We proved the disks did not
have the same behavior/specs
using this diff

The reseller changed all the
250 disks 150K euros

We spent the next months
changing and resilvering
arrays already in production

TLDR;

sha256sum(1)

Metrics are everywhere in operations at an unprecedented scale and still
growing fast

The vast majority of I.T. professionals do not understand fully what they are
currently graphing

Graphs are meant to trigger a deeper questioning when the behavior changes

To make a costly decision based on metrics without taking the time to ensure
what is exactly this metric is pure folly

Acquiring this knowledge is necessary and time consuming and requires humility

task(1) add project:young_me [...]

Kernel code ain’t no saint writing

Macros make things easy if you are not a C guru

Read git history per sub-system it helps a lot

Ask upstream if they are interested in what you plan to write

Propose a (probably stupid) way of doing the change before doing code

Then code and get things upstreamed

