

BPF at Facebook

1) kernel upgrades
2) BPF In the datacenter
3) BPF evolution

4) where you can help

Kernel upgrades in FB

- "Upstream first" philosophy.

- Close to zero private patches.

- As soon as practical kernel team:
. takes the latest upstream kernel
. stabilizes it
. rolls it across the fleet
. backports relevant features until the cycle repeats

- It used to take months to upgrade. Now few weeks. Days when necessary.

Kernel version by count

- As of September 2019.
- It will be different tomorrow.

- One kernel version on most servers.

- Many 4.16.x flavors due to long tall.

- Challenging environment for user space.

- Even more challenging for BPF based tracing.

Do not break user space

- Must not change kernel ABI.
- Must not cause performance regressions.
- Must not change user space behavior.

- Investigate all differences.
. Either unexpected improvement or regression.
. Team work Is hecessary to root cause.

Do you use BPF?

- Run this command on your laptop:
- sudo bpftool prog show | grep name | wc -l

- What number does it print?

- Don't have bpftool ? Run this:

s -la /poroc/*fd | grep bpf-prog | wc -

BPF at Facebook

- ~40 BPF programs active on every server.
- ~100 BPF programs loaded on demand for short period of time.

- Mainly used by daemons that run on every server.
- Many teams are writing and deploying them.

BPF program distribution by type

cgroup_sock
socket_—ﬁlt/ei'r/w 1
perf_event

xdp
sock_ops
Iwt_xmit

cgrou p_s,,ysc/tl
cgrou p_soc,k/f_/add r
cgroup_device
cgroup_skb

kprobe

tracepoint

\ sched cls

Kernel team is involved in lots of investigations.

It's not true, but | often feel this way)

10

Example 1: packet capture daemon

- This daemon is using SCHED_CLS BPF program.

- The program Is attached to TC ingress and runs on every packet.
- With T out of million probability it does bpf_perf_event_output(skb).
- On new kernel this daemon causes 1% cpu regression.

- Disabling the daemon makes the regression go away.
- |Is 1t BPF?

11

Example 1: packet capture daemon (resolved)

- Turned out the daemon is loading KPROBE BPF program as well for unrelated logic.

- Kprobe-d function doesn't exist in new kernel.
- Daemon decides that BPF is unusable and falls back to NFLOG-based packet

capture.
- nflog loads iptable modules and causes 1% cpu regression.

12

Takeaway for developers

- Kprobe Is not a stable ABI.
- Everytime kernel developers change the code some kernel developers pay the price.

13

Example 2: performance profiling daemon

- The daemon Is using BPF tracepoints, kprobes in the scheduler and task execution.

- |t collects kernel and user stack traces, walks python user stacks inside
program and aggregates across the fleet.

- This daemon is #1 tool for performance analysis.

- On new kernel 1t causes 2% cpu regression.

- Higher softirg times. Slower user apps.

- Disabling the daemon makes the regression go away.
- |Is 1t BPF?

=

DF

14

Example 2: performance profiling daemon (resolved)

- Turned out that simply installing kprobe makes 5.2 kernel remap kernel .text from

2M huge pages into 4Kk.
- That caused more |-TLB misses.
- Making BPF execution In the kernel slower and user space as well.

15

Takeaway

- Kprobe Is essential part of kernel functionality.

16

Example 3: security monitoring daemon

- The daemon is using 3 kprobes and 1 kretprobe.

- ITS

=

PF program code just over 200 lines of C.

- |t runs with low priority.
- It wakes up every few seconds, consumes 0.01% of one cpu and 0.01% of memory.

- Yet It causes large P99 latency regression for database server that runs on all other
cpus and consumes many Gbytes of memory.
- Throughput of the database Is not affected.

- |Is It

- Disabling the daemon makes the regression go away.

3PF?

17

Investigation

Facts:
- Occasionally memcpy/() in a database gets stuck for 1/4 of a second.

- The daemon is rarely reading /proc/pid/environ.

Guesses:

- |s database waiting on kernel to handle page fault ?

- While kernel Is blocked on mmap_sem ?

- but "top" and others read /proc way more often. Why that daemon is special?

- Dive into kernel code
fs/proc/base.c
environ_read()
access_remote_vm()
down_read(&Mmm->mmap_sem)

18

funclatency.py - Time functions and print latency as a
histogram

funclatency.py -d100 -m access remote vm

Tracing 1 functions for " access remote vm"... Hit Ctrl-C to end.
msecs : count distribution
O —> 1 - 21938 khkkkkhkkkkhkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkkkkk
2 -> 3 : 0
4 -> 7 : O
8 -> 15 0
16 -> 31 0
32 -> 63 : O
64 -> 127 : 0
128 -> 255 2 7
256 -> 511 S | |
Detaching...

This histogram shows that over the last 100 seconds there
were 3 events where reading /proc took more than 256 ms.

funcslower.py - Dump kernel and user stack when given
kernel function was slower than threshold

funcslower.py -m 200 -KU access remote vm

Tracing function calls slower than 200 ms... Ctrl+C to quit.

COMM PID LAT (ms) RVAL FUNC

security daemon 1720415 399.02 605 = access remote vm
kretprobe trampoline
read
facebook::...:: :readBytes (folly::File consté&)

This was the kernel+user stack trace when our security
daemon was stuck in sys_read() for 399 ms.

Yes. It's that daemon causing database latency spikes.

20

Collect more stack traces with offwaketime.py ...

finish task switch
___schedule

preempt schedule common
_cond resched

__get user pages

get user pages remote
__access _remote vm

proc pid cmdline read
__vfs read

vEfs read

sys read

do syscall 64

read

The task reading from /proc/pid/cmdline can go to sleep without releasing
mmMmap_sem of mm of that pid.

The page fault in that pid will be blocked until this task finishes reading /proc.

21

Root cause

- |t runs with low priority.

Low CPU quota for the daemon coupled with aggressive sysctl kernel.sched_*
tweaks were responsible.

22

Takeaway

- BPF tracing tools are the best to tackle

PEF regression.

23

Another kind of BPF investigations

- Daemons (and their

=

- Many kernels run in the datacenter.

PEF programs) need to work on all of them.

- BPF program works on developer server, but fails in production.

24

On developer server

bpf.c

#include <linux/bpf.h>
#include <linux/filter.h>
int prog(struct _ sk buff* skb)

{

if (skb->len < X) {
return 1;

}

ControlApp.cpp

#include <bcc/BPF.h>

std: :string BPF_PROGRAM =
#include ”path/to/bpf.c”

namespace facebook {

}

Daemon

ControlApp

bpf.c

libbcc

LLVM/Clang

25

On production server

bpf.c

System headers
#include <linux/bpf.h>

Daemon

#include <linux/filter.h>

int prog(struct _ sk buff* skb) linux/bpf.h
LLVM/Clang { linux/filter‘ -
if (skb->len < X) { linux/shed.h
return 1;

} linux/fs.h

- Embedded LLVM is safer than standalone LLVM.
- LLVM takes 70 Mb on disk. 20 Mb of memory at steady state. More at peak.

- Dependency on system kernel headers. Subsystem internal headers are missing.
- Compillation errors captured at runtime.
- Compillation on production server disturbs the main workload.

- And the other way around. llvm may take minutes to compile 100 lines of C.

26

BPF CO-RE (Compile Once Run Everywhere)

- Compile BPF program into "Run Everywhere" .o file (
- Test it on developer server against many "kernels'.

- Adjust .o file on production server by libbpf.

- No compilation on production server.

PE assembly + extra).

27

BTF (BPF Type Format)

- BTF describes types, relocations, source code.

- LLVM compiles BPF program C code into BPF assembler and BTF.
- gcc+pahole compiles kernel C code into vmlinux binary and BTF.

- libbpf compares prog's BTF with vmlinux's BTF and adjusts BPF assembly before
loading into the kernel.

- Developers can compile and test for kprobe and kernel data structure
compatibility on a single server at build time instead of on N servers at run-time.

28

#1inc

#inc]
#inc
#inc
#inc]

trace_kfree_skb today

lude <linux/skbuff.h> /* kernel headers */
lude <linux/netdevice.h>

lude <uapi/linux/bpf.h>

lude <linux/version.h>

lude "bpf_helpers.h”

#define _(P) (fl typeof(P) val = 0; \

SEC(

{

bpf_probe_read(&val, sizeof(val), &P); \
val; I

"kprobe/kfree_skb")

trace_kfree_skb(pt_regs *ctx)

sk_buff * skb = (sk_buff *) PT_REGS_PARM1(ctx);
net_device *dev = _(skb->dev);
i1findex = _(dev->ifindex);

bpf_printk("skb->len %d\n", _(skb->len));
bpf_printk("skb->queue_mapping %d\n", _(skb->queue_mapping));
bpf_printk("dev->ifindex %d\n", ifindex);

return 0;

clang -I/path_to_kernel_headers/ -I/path_to_user/

PARM?2 typo will "work" too
Any type cast is allowed

six bpf_probe_read() calls

29

trace_kfree_skb today trace_kfree_skb with CO-RE

#1nclude <linux/bpf.h>
/* bpftool btf dump file \
* /sys/kernel/btf/vmlinux format ¢ > vmlinux.h */

#include <linux/skbuff.h> /* kernel headers */ #include "vmlinux.h"

#include <linux/netdevice.h> #1nclude "bpf_helpers.h”

#1nclude <uapi/linux/bpf.h>

#include <linux/version.h> #define _(P) (*__builtin_preserve_access_index(&P))
#1nclude "bpf_helpers.h"

trace_kfree_skb {

#define _(P) (fl typeof(P) val = 0; \ sk_buff *skb;
bpf_probe_read(&val, sizeof(val), &P); \ *location;
val; I 33
SEC("kprobe/kfree_skb™) SEC("raw_tracepoint/trace_kfree_skb")
trace_kfree_skb(pt_regs *ctx) trace_kfree_skb(trace_kfree_skb* ctx)
{ {
sk_buff * skb = (sk_buff *) PT_REGS_PARM1(ctx); sk_buff *skb = ctx->skb;
net_device *dev = _(skb->dev); net_device *dev = _(skb->dev);
ifindex = _(dev->ifindex); ifindex = _(dev->ifindex);
bpf_printk("skb->len %d\n", _(skb->len)); bpf_printk("skb->len %d\n", _(skb->len));
bpf_printk("skb->queue_mapping %d\n", _(skb->queue_mapping)); bpf_printk("skb->queue_mapping %d\n", _(skb->queue_mapping));
bpf_printk("dev->ifindex %d\n", ifindex); bpf_printk("dev->ifindex %d\n", ifindex);
return 0; return 0;

Define kernel structs by hand instead of
Including vmlinux.h

If skb and location are accidentally swapped
the verifier will catch it

Works with any raw tracepoint

Same kernel helper as in networking programs

#include <linux/bpf.h>
#1nclude "bpf_helpers.h"

#define _(P) (*__builtin_preserve_access_index(&P))

15

)3

net_device {
1findex;

__ule

/* same as kernel's struct net_device

sk_buff { /* field names and sizes should match to those in the kernel
len;
queue_mapping;
ce *dev; /* order of the fields doesn't matter

het_devi

{

__uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);

__uint(key_size
__uint(value_s1i

, sizeof(int));
ze, sizeof(int));

} perf_buf_map SEC(".maps");

5

trace_kfree_skb {

sk_buff
*location;

*skb;

SEC("raw_tracepoint/trace_kfree_skb")

{

trace_kfree_skb

sk_buff
net_devi

(trace_kfree_skb* ctx)

*skb = ctx->skb;
ce *dev = _(skb->dev);

ifindex = _(dev->ifindex);

bpf_printk("skb

->len %d\n", _(skb->len));

/* BTF-defined maps

bpf_printk("skb->queue_mapping %d\n", _(skb->queue_mapping));
bpf_printk("dev->ifindex %d\n", ifindex);
/* send first 72 bytes of the packet to user space */
bpf_skb_output(skb, &perf_buf_map, (72ull << 32) | BPF_F_CURRENT_CPU,

return 0;

&ifindex, sizeof(ifindex));

*/

4

o

L 4

31

BPF verifier giant leaps in 2019

- Bounded loops
- bpf_spin_lock
- Dead code elimination

- Scalar precision tracking

32

BPF verifier is smarter than livm

- The verifier removes dead code after it was optimized by llvm -O2.
- Developers cannot cheat by type casting integer to pointer or removing '‘const’.

- LLVM goal -> optimize the code.
- The verifier goal -> analyze the code.

- Different takes on data flow analysis.
- The verifier data flow analysis must be precise.

33

BPF verifier 2.0

- The verifier cannot tell what "r2 = *(ue4™)(r1 + 8)" assembly instruction is doing.
- Unless rl Is a bulltin type and +8 is checked by is_valid_access().

- The verifier cannot trust user space hints to verity BPF program assembly code.

- In-kernel BTF Is trusted.

- With BTF the verifier data flow analysis enters into new realm of possibilities.

34

Every program type implements its own
Is_valid_access() and convert_ctx_access().

1 cause for code bloat.
Bug prone code.

drivers/media/rc/bpf-lirc.c: .1s_valid_access

kernel/bpf/cgroup.c: .1s_valid_access
kernel/bpf/cgroup.c: .1s_valid_access
kernel/bpf/cgroup.c: .1s_valid_access

kernel/trace/bpf_trace.c: .1s_valid_access
kernel/trace/bpf_trace.c: .1s_valid_access =
kernel/trace/bpf_trace.c: .1s_valid_access =
kernel/trace/bpf_trace.c: .1s_valid_access
kernel/trace/bpf_trace.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access
net/core/filter.c: .1s_valid_access

= lirc_modeZ2_is_valid_access

= cgroup_dev_is_valid_access,
= sysctl_is_valid_access,
= cg_sockopt_is_valid_access,

kprobe_prog_is_valid_access,
tp_prog_is_valid_access,
raw_tp_prog_is_valid_access,
raw_tp_writable_prog_is_valid_access,
= pe_prog_is_valid_access,
sk_filter_is_valid_access,

= tc_cls_act_is_valid_access,

= xdp_is_valid_access,

= cg_skb_is_valid_access,

= lwt_is_valid_access,

= lwt_is_valid_access,

= lwt_is_valid_access,

= lwt_is_valid_access,

= sock_filter_is_valid_access,
= sock_addr_is_valid_access,

= sock_ops_is_valid_access,

= sk_skb_1is_valid_access,

= sk_msg_is_valid_access,

= flow_dissector_is_valid_access,
= sk_reuseport_is_valid_access,

None of It Is needed with

STF.

Wil be able to remove 1000s of lines.*

*when BTF kconfig is on.

static u32 bpf_ convert_ctx_access(enum bpf access_ type type,

const struct bpf insn *si,
struct bpf insn *insn_ buf,
struct bpf prog *prog, u32 *target size)

struct bpf insn *insn = insn_buf;
int off;

switch (si->off) {

case

case

case

case

case

case

case

case

offsetof(struct _ sk buff, len):
*insn++ = BPF_LDX MEM(BPF_W, si->dst_reg, si->src_regq,
bpf target off(struct sk buff, len, 4,
target size));
break;

offsetof(struct _ sk buff, protocol):
*insn++ = BPF_LDX MEM(BPF_H, si->dst_reg, si->src_regq,
bpf target off(struct sk buff, protocol, 2,
target size));
break;

offsetof(struct _ sk buff, vlan proto):
*insn++ = BPF _LDX MEM(BPF H, si->dst reg, si->src_regq,
bpf target off(struct sk buff, vlan proto, 2,
target size));
break;

offsetof (struct __ sk buff, priority):
if (type == BPF WRITE)
*insn++ = BPF_STX MEM(BPF_W, si->dst_reg, si->src_regq,
bpf target off(struct sk buff, priority, 4,
target _size));

else
*insn++ = BPF_LDX MEM(BPF W, si->dst reg, si->src_reg,
bpf target off(struct sk buff, priority, 4,
target _size));
break;

offsetof (struct _ sk buff, ingress ifindex):
*insn++ = BPF_LDX MEM(BPF_W, si->dst_reg, si->src_regq,
bpf target off(struct sk buff, skb iif, 4,
target _size));
break;

offsetof (struct __ sk buff, ifindex):
*insn++ = BPF_LDX MEM(BPF FIELD SIZEOF (struct sk buff, dev),
si->dst_reg, si->src_regq,
offsetof (struct sk buff, dev));

*insn++ = BPF_JMP_ IMM(BPF_JEQ, si->dst _reg, 0, 1);
*insn++ = BPF_LDX MEM(BPF_W, si->dst_reg, si->dst_regq,
bpf target off(struct net device, ifindex, 4,
target size));
break;

offsetof(struct _ sk buff, hash):
*insn++ = BPF_LDX MEM(BPF W, si->dst reg, si->src_regq,
bpf target off(struct sk buff, hash, 4,
target size));
break;

offsetof(struct _ sk buff, mark):
if (type == BPF WRITE)
*insn++ = BPF_STX MEM(BPF W, si->dst reg, si->src_regq,
bpf target off(struct sk buff, mark, 4,
target size));
else
*insn++ = BPF_LDX MEM(BPF W, si->dst reg, si->src_regq,
bpf target off(struct sk buff, mark, 4,
target _size));
break;

35

How you can help

We need you

to hack.
to talk.
to invent.

BPF development i1s 100% use case driven.
Your requests, complains, sharing of success stories are shaping the future kernel.

36

JUST DO BPF.

