
Persistent log with UBI

Matthieu CASTET - www.parrot.com

25 September 2013

Persistent log with UBI

http://www.parrot.com

Persistent log with UBI ulog

Goal

Log must be persistent on product : Nand flash
Can be used to trace system updates

Has to be independent/hidden of application filesystem
not on / filesystem

Has to be usable on shipped products
difficult to resize all partitions

Persistent log with UBI ulog

Which interface to use ?

Raw flash (MTD)
UBI
Nand filesystem (UBIFS, ...)

Persistent log with UBI ulog

Flash device vs block device 1/2

Block device Flash device
Consists of sectors Consists of eraseblocks
Sectors are small (512, 1024 B) Eraseblocks are larger (typically

128KB)
Maintains 2 main operations:

read sector

write sector

Maintains 3 main operations:

read from eraseblock

write to eraseblock

erase eraseblock

Persistent log with UBI ulog

Flash device vs block device 2/2

Block device Flash device
Bad sectors are re-mapped and
hidden by hardware (at least in
modern LBA hard drives)

Bad eraseblocks are not hidden
and should be dealt with in soft-
ware

Sectors are devoid of the wear-out
property

Eraseblocks wear-out and become
bad and unusable after about 103

(for MLC NAND) - 105 (NOR, SLC
NAND) erase cycles

Flash device is more difficult to handle (ecc, bad block,
eraseblock, ...)

Persistent log with UBI ulog

MTD

MTD stands for "Memory Technology Devices"
Provides an abstraction of flash devices
Hides many aspects specific to particular flash
technologies
Provides uniform API to access various types of flashes
E.g., MTD supports NAND, NOR, ECC-ed NOR,
DataFlash, OneNAND, etc
Provides partitioning capabilities

Persistent log with UBI ulog

UBI

Stands for "Unsorted Block Images"
Provides an abstraction of "UBI volume"
Has kernel API and user space API (/dev/ubi0)
Provides wear-leveling
Hides bad eraseblocks
Allows run-time volume creation, deletion, and re-size
Is somewhat similar to LVM, but for MTD devices

Persistent log with UBI ulog

UBI volume vs MTD device

MTD device UBI device
Consists of physical eraseblocks
(PEB), typically 128 KB

Consists of logical eraseblocks (LEB),
slightly smaller than PEB (e.g 126/124
KB)

Has 3 main operations

read from PEB

write to PEB

erase PEB

Has 3 main operations

read from LEB

write to LEB

erase LEB

May have bad PEBs Does not have bad LEB (handle a cer-
tain amount of bad PEB)

PEBs wear out LEBs do not wear out - UBI spread the
I/O load across the whole flash

MTD devices are static UBI volumes are dynamic

Persistent log with UBI ulog

Main idea behind UBI

Maps LEBs to PEBs
Any LEB may be mapped to any PEB
Eraseblock headers store mapping information and erase
count

Persistent log with UBI ulog

Other

Handle bit-flips by moving data to a different PEB
Configurable wear-leveling threshold
Atomic LEB change
Volume update/rename operation
Suitable for MLC NAND
Performs operations in background
Works on NAND, NOR and other flash types
Tolerant to power cuts
Simple and robust design
easy support in bootloader

Persistent log with UBI ulog

UBIFS

Filesystem on top of UBI (2.6.27 2008-10)
Needs a minimal number of LEBs to work : 17

http://www.linux-
mtd.infradead.org/faq/ubifs.html#L_few_lebs

Complex filesystem : few (rare) corruptions seen on
products

Persistent log with UBI ulog

log over UBI

we have a UBI device (for linux kernel) with free space
UBIFS has too much overhead

Persistent log with UBI ulog

UBI user API

include/mtd/ubi-user.h
device attach
device detach
volume create
volume delete
volume resize
volume rename

volume update (static volume)
LEB erase
LEB atomic change
LEB map
LEB unmap

lseek
read
write

Persistent log with UBI ulog

ulog

A log entry is much smaller than a page size (512B-4KB)
A cache is needed (in flash)
ulog uses a dynamic volume to have per LEB write

Persistent log with UBI ulog

ulog

Persistent log with UBI ulog

ulog : flush 1

Persistent log with UBI ulog

ulog : flush 2

Persistent log with UBI ulog

ulog : flush 2

Persistent log with UBI ulog

ulog : flush 3

Persistent log with UBI ulog

ulog : flush 4

Persistent log with UBI ulog

Data flush

Copy data from level N to level N+1
Merge pages to try to fill pages from level N+1

if level 0 has 64 entries of about 20 B, it can be merged in a
page of 2 KB.

Can be recursive !
flush of L0, but L1 is full
flush of L1 needed
...

Persistent log with UBI ulog

ulog : rotate 1

Persistent log with UBI ulog

ulog : rotate 2

Persistent log with UBI ulog

ulog : rotate 3

Persistent log with UBI ulog

ulog : rotate 4

Persistent log with UBI ulog

ulog : rotate 5

Persistent log with UBI ulog

Data rotate

Clean next LEB (if not empty)
Write data on it

Persistent log with UBI ulog

Data format

Header (32 bits)
size (24 bits)
version (3 bits) (relevant for first page)

Log data

Persistent log with UBI ulog

Scan

Parse header for all LEBs
LEB version
LEB index (which pages have data)

For last level (L2), find current LEB
All empty use first (L2) LEB
Use LEB version

Persistent log with UBI ulog

Scan

Parse header for all LEBs
LEB version
LEB index (which pages have data)

For last level (L2), find current LEB
All empty use first (L2) LEB
Use LEB version

Persistent log with UBI ulog

ulog API

ulog_init

ulog_destroy

ulog_read

ulog_printf

ulog_vprintf

ulog_flush

Persistent log with UBI ulog

ulog demo

Persistent log with UBI ulog

TODO

any remark?

Need to correctly handle all power failure cases during a
flush

Can be complex in case of cascaded flush

Some data are currently duplicated

Persistent log with UBI ulog

TODO

any remark?
Need to correctly handle all power failure cases during a
flush

Can be complex in case of cascaded flush

Some data are currently duplicated

Persistent log with UBI ulog

Questions ?

Merci pour votre attention !
Thanks for your attention!
Questions?

Persistent log with UBI ulog

