
Maintenance of a stable kernel branch

2012/09/21

Willy Tarreau - Exceliance
ALOHA R&D

<wtarreau@exceliance.fr>
http://www.exceliance.fr/

1



Who am I ?

I'm the maintainer of various old stable kernel branches :

2.4 since 2006

2.6.27 since 2010

2.6.32 since 2012

2



What's a stable kernel ?

Fork of the mainline kernel which aims at being more reliable

Overlap between 2 versions ensures users are not stressed to upgrade.

What is merged is dictated by several rules in stable_kernel_rules.txt:

Only small reviewable patches (<100 lines)

No new features added

fix real bugs that bother people

minor driver updates are accepted (eg: support for new PCI IDs)

everything merged must already be upstream

3



What's a longterm supported kernel (LTS) ?

stable kernel branch maintained longer (between 18 and 24 months)

originally designed to make distro maintainers' life easier

rate of patches progressively drops for 2 years and drops faster afterwards

kernels 2.6.16, 2.6.27, 2.6.32, 3.0 are LTS

4



What stable and LTS kernels are used for ?

Stable kernels are made to ensure users can update with limited risk, so that they will
eventually get rid of known bugs, resulting in a better overall Linux kernel quality in
deployments.

low risk of regression within the same branch means no excuse for not upgrading

accelerates mainline releases by removing some last minute stress

useful common base for long or experimental development

5



Who uses stable kernels and why ?

stable kernels are used by all those who want reliability and not to bother with bug
reports

prevalent in the areas of servers and embedded devices that are not easily
upgradable

some distros use them and contribute back to them by pointing commit IDs to
backport

6



What happens at the end of a stable cycle ?

For the maintainers :

no more updates published for the given branch

... except the LTS ones that are picked for extended support

For the user :

mandatory upgrade to next stable kernel, unless running on extended support,
where upgrade is just recommended

7



What's the EOL expectation on these
extended LTS kernels ?

2.4, 2.6.27 and 2.6.32 are currently extended LTS kernels

no identified EOL yet

2.4 has no more releases (last 12/2010) but fixes still published (04/2012)

relatively low maintenance work when most patches are not relevant anymore.

8



How much work is it to maintain such
kernels ?

The amount of work is manageable due to the low frequency of updates :

generally no emergency to publish fixes since users have to qualify fixes and planify
reboots

bugs generally have been present for so long that they can still wait (eg: leap
second+futex)

many patches are skipped because reverted later or amended

such a task is improved by batch processing (eg: dedicate a whole week-end)

some backports are harder to make, find limit between fix and sabotage

fixing may sometimes be too risky so we prefer to document the bug instead (eg:
unix socket local DoS in 2.4)

9



How did I get involved with this task ?

long-time need for stable kernels for professional and personal usage

maintenance of the unofficial "hotfix" tree in parallel to mainline 2.4 in early 2005

takeover of 2.4.33 maintainership in 2006

first attempts at extending 2.6.20 and 2.6.25 with Greg's help

official takeover of 2.6.27, then 2.6.32, the two last LTS reaching EOL

10



Why I do this

very interesting and enriching

allows me to use ultra-stable kernels that have been gathering fixes for 2 years

allows my company to safely ship products which we know customers will refuse to
upgrade for years

not that much an amount of work, only difficulty is to find contiguous time

participates to Linux deployment on amazing and unexpected devices which cannot
always be upgraded

and... because Greg is really helpful and users are forgiving !

11



What the process looks like

Patches are backported from next LTS so that we can guarantee that a user upgrading
will not meet the same unfixed bug again. 2.6.32 currently backports from 3.0.

Enumerate all patches that were added to 3.0 since last backport session1.

Review all of them one at a time (between 600 and 1000 each time). This is the
part which requires a full week-end.

2.

Only those which apply, are easy to fix, were explicitly asked for or were the
result of a relevant security alert are considered.

3.

Remaining ones are ignored, but can be merged upon request4.

Resulting kernel is tested on several archs and configs.5.

12



Step 1/6 : enumerating new patches

This process can take a full day!

git log x..y sent to a large file

All commit messages are read. Think about it next time, detailed commit
descriptions are absolutely essential

Patches are tagged by hand in the log file

Some scripts help picking them out from the long log

13



Step 2/6 : integrating patches

This process generally takes a full day too !

Patches are processed by moving them between queues

quilt is used for applying fixes. Not easy to get first but quite helpful.

What does not apply is either fixed or quickly moved to a "failed" queue

About 10% of patches generally rely on many other patches. Some quick arbitration
needed.

Sometimes I ask for help (lack of reproducer or code that I don't understand). All
subsystem maintainers have always been very helpful with this task. Some of them
are amazingly careful about stable kernels.

14



Step 3/6 : testing

This is the step which causes me small eyes on Monday morning

Kernels are built for at least 2 architectures, ideally 3 (i386, x86_64, arm) with one or
two configs each.

Many times things go wrong (tests are really useful)

Many times I don't have enough time to retest all fixes, so some breakage happens...

15



Step 4/6 : preparing for the public review
process

This is the fastest but the most stressful step.

quilt mail is used for this, along with a huge amount of ugly and fragile scripts

It's easy to get something wrong, processing mboxes with utilities is never fun

mistakes are generally cascaded into older branches at the same time

Last review by hand with mutt

When everything looks OK, then send to the world using formail.

No global -rc patch is provided with these kernels, as end-users don't test them.

Note: be very careful with git commit when fixing rejects, it can make you the

apparent author of someone else's commit.

16



Step 5/6 : peer review and fixes

This step lasts a few days so that patch authors can suggest missing fixes, removing
undesired ones or report an incorrect backport.

The patch queue is then adjusted based on this feedback.

Another review might be fired if too many patches were changed.

Very few users test these patches, so feedback may come much later than the
deadline.

17



Step 6/6 : release

This is the easiest part.

One or two builds/boots are generally performed if patches were changed from the
preview

A few minutes of scripts and the git tree is ready and tagged

Kernel tree is pushed to "for-greg" tree on kernel.org

I ping Greg who pulls/pushes to the final location => kernel is released

I then feel much better for a few months !

18



Step 7/6 : release again :-)

It generally happens that a release follows another one because there are more
testers, and more build breakage is discovered, sometimes up to 3 months later!

19



Conclusion

Interesting and fun to do if you know your limits

Unfortunately needs more contiguous time than I can devote at the moment

Needs lots of scripts to avoid biggest errors and to save time

Needs real support for the community (bug reporters, subsystem maintainers,
testers)

You know users are satisfied when they start bringing patches themselves

20



Thank you !

Questions ?

21


