USE

®
We adapt. You succeed.

Marvels of Memory Auto-configuration

also known as SPD

Jean DELVARE <jdelvare@suse.com>
L3 support agent
SUSE

The plan

History of DRAM module formats

Basics of Serial Presence Detect (SPD) implementation
SPD implementation on DDR4 memory

Linux support

History of DRAM module formats

Even before the beginning

* DRAM first developed in the mid 70s in Japan
* Soldered memory, everything can (and must) be pre-configured
* No possible hardware upgrade

In the (x86) beginning

e 30-pin SIMM on 286 to 486 (80s)
* No room for configuration information

* Hardware probing at every boot, or manual configuration
* Limited upgrade options

Then there was PPD (Parallel Presence Detect)

e 72-pin SIMM on 486 to early
Pentium® Il (90s)

* 4 pins used for configuration
data
e 2 for memory module size
e 2 for memory access time

SRS,

Pin
(..)
67
68
69
70

()

Name

PD1
PD2
PD3
PD4

Description

Presence Detect 1
Presence Detect 2
Presence Detect 3
Presence Detect 4

Parallel Presence Detect (PPD)

* Quickly limited by the low PD2 PD1 Size (MB)
number of pins GND GND 4 or 64
* How do you express sizes of 1, 2, GND NC 2 or 32
4, 8, 16, 32 and 64 MB with only 2 NC GND 1 or 16
bits?
_ NC NC 8
* How do you express access times
of 100, 80, 70, 60 and 50 ns with PD4 PD3 Access time (ns)
only 2 bits? GND GND 50 or 100
* Well, you don’t! GND NG 30

* Hardware probing or manual

. : : NC GND 70
configuration still needed

NC NC 60

Parallel Presence Detect (cont’d)

* Later revisions added a 5th, then 6th and 7th pin to handle ECC and
larger module sizes
* Doesn’t solve the problem
* Doesn't scale
* Needs for finer-grained timings (beyond access time)
* Hardware probing or manual configuration is going to be a disaster

Then there was SPD (Serial Presence Detect)

* SIMM replaced by 168-pin Pin
DIMM in the mid 90s ()
(Pentium®) 82

- PPD replaced by SPD 63

* 5 pins used for configuration (...
data 123

124

125
(...)

Name

SDA
SCL

SAO
SAl
SA2

Description

Serial Data
Serial Clock

Serial Address bit O
Serial Address bit 1
Serial Address bit 2

Basics of SPD implementation

Serial Presence Detect (SPD)

* Fixed number of pins
* Independent of the amount of configuration data to be stored
* No hardware probing or manual configuration needed
* 3 address pins allow connecting up to 8 modules to the same serial bus
* Reduced board footprint compared to PPD
* Data stored in AT24C02 EEPROMs
e Standard and cheap
* [2C and SMBus compatible

* Up to 256 bytes of data for memory type,
size, timings, and more

nnnunnnnunnnnnnnnnnnmnm mmw

SMBus diagram

2 wires:
Serial Clock (SCL)
Serial Data (SDA)

SMBus
controller

DIMM Slot

DIMM Slot

Hardware
monitor

SPD EEPROM pinout

In red: connected to the memory
module (power)

In blue: connected to the SMBus
through the memory slot (data)

In black: connected directly to
the memory slot (address)

Full I12C address is:
1010(A2)(A1)(A0)b = 0x50-0x57

A0

Al

A2

Vss

Vcc

NC

SCL

SDA

SPD EEPROM address

LRI g

S LLLLEELEX A LA EE LU AR OO AOREEUELEAR - ARRRRRRARRARRARRERLRRRERRRRARAARAL LA AERAARAR

e T T T T T T T T

= g ﬁ)ﬂ“ﬁ i'url;;“_;i;a""._h-a
T~ ‘

HS1GER3

I2C/ISMBus Address Map (DDR3)

i2cdetect -y “SMBus

00:
10:
20:
30:
40:
50:
60:
70:

0

1

2

3

4

5

I801 adapter at £000”
6 7 8 9 a b ¢ d4d e

Use of SPD EEPROM

DDR SDRAM

DDR3 SDRAM

SPD implementation on DDR4 memory

The problem with DDR4

* We need 512 bytes of storage

e Solution #1: use AT24C04 EEPROMSs
* Pin-compatible with AT24C02 (pin A2 is unused)
* Use 2 I12C addresses per module

* Problems:

 Maximum 4 memory modules (without SMBus multiplexing)
* Breaks traditional addressing assumptions

I2°C/ISMBus Address Map (using AT24C04)

00:
10:
20:
30:
40:
50:

60
70

0 1 2 3

4 5

44 —-

6 7

5ﬂ52 W[[— =

8 9
08 —-

The problem with DDR4 (cont’d)

e Solution #2: use AT24C32 EEPROMSs
* Pin-compatible with AT24C02

* Use 1 I2C address per module, maximum 8 modules, respect traditional
addressing assumptions

» Offer more capacity than we will ever need (4096 bytes)
* Problem:
e Use 2-byte addressing — not compatible with SMBus!

Reading from EEPROMSs

1-byte addressing (SMBus-compatible)

l 2C addr WA data addr AlS 12C addr Rl data A .. [AS

Master to slave Slave to master

2-byte addressing (not SMBus-compatible)

l 12C addr WIA data addr 1 |A data addr 2 JAIS 12C addr Rl data A ...

Master to slave Slave to master

The Jedec solution for DDR4

* Solution #3: define a new EEPROM standard that uses paging
* Named EE1004
* Pin-compatible with AT24C02

e Uses 1 main I2C address per module, maximum 8 modules, respects
traditional addressing assumptions

* Implements block write protection in a standard way

* Uses extra I12C addresses for page selection, page querying, and write
protection

I2C/ISMBus Address Map (DDR4)

i2cdetect -y “SMBus

00:
10:
20:
30:
40:
50:
60:
70:

0

1

2

3

4

14

5

15

I801 adapter at £000”

6

v

8
08

9

a

b

Cc

d e

DDR4-specific I?C addresses

* 0x31, 0x34, 0x35, 0x30: Query or set write protection (per block)
* 0x33: Clear write protection (all blocks)
* 0x36, 0x37: Query or select page

1 page (256 bytes) = 2 blocks
All these addresses are shared by all installed memory modules

The Jedec solution for DDR4 (cont’d)

Uses broadcast messages for everything

* Fast but fragile

* Abuses the I2C protocol (validation, arbitration)

Hardly extendable

e 7 out of 8 control addresses already consumed

* No provision for larger variants

Includes useless payload in messages for no good reason
My advice to Jedec engineers: KISS

DDR4 example: Select page 0

What DIMM#1 answers:
S 0x36 WA dummy A dummy [AS

What DIMM#2 answers:
S 0x36 WN dummy N dummy NS

What the SMBus master sees:
S 0x36 WA dummy A dummy [AS

- Can’t be sure that page selection worked on all DIMMs

DDR4 example: Page querying

What DIMM#1 answers (page 0 is selected):

S o0x36 RA dummy A dummy [AS

What DIMM#2 answers (page 1 is selected):

S 0x36 RN dummy N dummy NS

What the SMBus master sees: page 0 is selected
S o0x36 RA dummy A dummy [AS

- Can’t be sure that all DIMMs are on the same page

Linux support

Do we need it?

* Not mandatory

* Good to have for:
* Diagnostics (detecting sub-optimal memory module pairing)
* |Inventory purposes
* Adding memory to an existing system

* Tools like dmidecode are not accurate enough

Drivers

* First of all you need an SMBus controller driver
* i2c-i801 for recent Intel chipsets
* i2c-piix4 for very old Intel chipsets and recent AMD chipsets
* Many other drivers available in the kernel tree, look in drivers/i2c/busses.

* Driver to read the EEPROMs themselves

* eeprom (since Im_sensors project, December 1998, Philip Edelbrock; in kernel
tree since v2.6.0, September 2003, thanks Greg KH) up to DDR3

* at24 (in kernel tree since v2.6.27, July 2008, Wolfram Sang) up to DDR3
* eel1004 (in kernel tree since v4.20, October 2018, Jean Delvare) for DDR4

User-space tools

* decode-dimms (part of i2c-tools)
* Perl script

* Supports SDR, DDR, DDR2, DDR3 (since 2008-2013) and DDR4 (since 2017)
SDRAM

e Plain text or HTML output

Remaining problems

* The legacy eeprom driver causes trouble

* Binds to all devices at compatible 12C address
e Slow
* Dangerous

* Doesn’'t work with DDR4 — even steals devices from ee1004 driver
* Deprecated, must be removed altogether eventually
 Both at24 and ee1004 require the EEPROM devices to be explicitly
instantiated
e Can be done automatically on DT/OF-based systems

* But what about x86 desktops and servers?
« ACPI?

Explicitly instantiating the EEPROMs

Example of manual steps (for DDR3):
modprobe i2c-dev
i2cdetect -1
i2cdetect -y 9
echo spd 0x50 > /sys/bus/i2c/devices/i2c-9/new_device
echo spd 0x51 > /sys/bus/i2c/devices/i2c-9/new_device

Tedious and error-prone:
* Bus number depends on system, not even stable
* |2C addresses depend on installed DIMMSs
* Device name depends on memory type (ee1004 for DDR4)

The final touch (work In progress)

We want it to work out of the box in the most common cases

 Use DMI data to find out memory type
* White list of supported memory types
e Skip if there are more than 4 memory slots (at least on desktop systems)
* Fine-tuning possible based on DMI data (chassis type...)
* Probe I?)C address 0x50-0x53 on the SMBus
* Needed because DMI information is not complete enough
* Must be enabled explicitly in each SMBus controller driver
* Skip if SMBus is multiplexed
* Instantiate the appropriate device on responsive addresses

Questions?

My solution for DDR4 (but it’s too late)

* Use one I’C control address per memory module
* 0x30 for the module at main address 0x50
* 0x31 for the module at main address 0x51
* etc.
 Compatible with SMBus, pin-compatible with AT24C02, complies
with addressing expectations

e 256 control commands available for block protection, page
selection and more - highly extendable

SUSE

We adapt. You succeed.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

