
Kernel Recipes 2022

Once upon an API

Michael Kerrisk, man7.org © 2022

mtk@man7.org

3 June 2022, Paris, France

Rev: # 66b2f76b3c8b

Who?

Linux man-pages project
https://www.kernel.org/doc/man-pages/

Approx. 1060 pages documenting syscalls and C library
Contributor since 2000
Maintainer since 2004
Comaintainer since 2020

I wrote a book
Trainer/writer/engineer
http://man7.org/training/
mtk@man7.org, @mkerrisk

©2022, Michael Kerrisk @mkerrisk Once upon an API 2 / 79

https://www.kernel.org/doc/man-pages/
http://man7.org/training/

Who here has a patch in the kernel?

You understand collective responsibility,
right?

Why?

Maybe because...
I’d like to see APIs done better

because...
a misdesigned API is (generally) unfixable
(we might break some binary that depends on the broken-ness)

and therefore...
user-space developers must live
with broken-ness for a long time

Or, maybe, just tell a story

But I didn’t make up the story. You did.

(Image credit: Piotr Siedlecki)

Outline

Story of first feature added in a then-new system call [*]
prctl() (added in 1997 (t == 0))
Seems simple
But, I went down a long rabbit hole one day...

When it comes to APIs, even something that seems simple
can turn out to be complicated!
A few thoughts on reducing frequency of design failures in
future APIs

[*] I tested various behaviors of this API using this program:
http://man7.org/code/procexec/pdeath_signal.c.html

©2022, Michael Kerrisk @mkerrisk Once upon an API 9 / 79

http://man7.org/code/procexec/pdeath_signal.c.html

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Since nearly the beginning of time(),
there has been SIGCHLD

(Signal sent to parent process when child terminates)

(UNIX 4t h Edition, 1973)

One day, someone decided
the converse might be useful

Subject: Patch to deliver signal to children
From: Richard Gooch
Date: 1997-08-22 0:21:38

Hi, Linus. I’ve appended a patch (relative to 2.1.51)
which defines a new syscall with the interface:

extern int prctl (int option, ...);

Currently the only option which is supported is
PR_SET_PDEATHSIG [...]

Any child process which does:
prctl (PR_SET_PDEATHSIG, sig);

will have <sig> delivered to it when its parent process dies.
[...] Eventually I hope to see all kinds of PR_SET_* and
PR_GET_* options :-)

prctl(PR_SET_PDEATHSIG, sig)
Child gets a signal when parent terminates

©2022, Michael Kerrisk @mkerrisk Once upon an API 14 / 79

Documentation!

I don’t know if Richard Gooch contacted the man-pages
maintainer of the time
But Andries Brouwer added documentation in early 1998:
PR_SET_PDEATHSIG
sets the parent process death signal of the current process
to arg2 (either a signal value in the range 1..maxsig, or 0 to
clear). This is the signal that the current process will get
when its parent dies. This value is cleared upon a fork().

©2022, Michael Kerrisk @mkerrisk Once upon an API 15 / 79

What could go wrong?

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Missing pieces

What about discoverability?
prctl(PR_GET_PDEATHSIG, &sig)

Return current setting in sig
Linux 2.3.15 (Aug 1999, t+2)

©2022, Michael Kerrisk @mkerrisk Once upon an API 18 / 79

That’s even simpler...

(but...)

Missing pieces

Subject: [patch-2.3.44] slight change to prctl(2)
From: Tigran Aivazian
Date: 2000-02-13 18:07:06

A long time ago I added PR_GET_PDEATHSIG to prctl(2) to match the
existing PR_SET_PDEATHSIG. Now that I noticed [the subsequently
added PR_GET_DUMPABLE] the whole thing looks inconsistent so I suggest
to change PR_GET_PDEATHSIG so that it is the *return* value of
prctl(PR_GET_PDEATHSIG) instead of [returning the setting in] the
second argument [...]

PR_GET_DUMPABLE returns value as function result;
PR_GET_PDEATHSIG returns value via 2nd argument

(“dumpable” was second prctl() operation implemented)
But at least we are consistently inconsistent...

Of prctl() "get" operations in Linux 5.18 that return int :
15 use function result, and 7 use *arg2

©2022, Michael Kerrisk @mkerrisk Once upon an API 20 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

How does some new feature interact
with other parts of the Linux API?

Interactions across the interface

Surprises may turn up in many places...
But these areas are often especially rich with surprises:

fork()
execve()
Signal delivery semantics
Threads
exit() / process termination
If file descriptors are in play: FDs vs open file descriptions

Multiple FDs may refer to same OFD (dup(), fork(), etc)
⇒ has led to ugly corner cases (e.g., in epoll(7))

©2022, Michael Kerrisk @mkerrisk Once upon an API 23 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Back to the manual page

Back to the (1998) manual page:
PR_SET_PDEATHSIG
sets the parent process death signal of the current process
to arg2 (either a signal value in the range 1..maxsig, or 0 to
clear). This is the signal that the current process will get
when its parent dies. This value is cleared upon a fork().

When I saw that, I wondered: what about execve() ?
I didn’t notice that omission until 2014 (t+17), but now the
manual page tells us:
This value is preserved across execve(2).

©2022, Michael Kerrisk @mkerrisk Once upon an API 25 / 79

This value is preserved across execve(2).

Maybe, if that detail had been explicitly noted
at the start, someone might have noticed a

security vulnerability earlier...

Signal permissions

From kill(2) :
For a process to have permission to send a signal, it must
either [have the CAP_KILL capability] or the real or effective
UID of the sending process must equal the real or saved
set-user-ID of the target process.

Sending signals requires privilege or credential (UID) match
Can we use PR_SET_PDEATHSIG to send a signal to a
process we could not otherwise signal?

That could be interesting for an attacker...

©2022, Michael Kerrisk @mkerrisk Once upon an API 27 / 79

Scenario 0

fork()--------------------------+
| \

[parent (UID 1000)] [child (UID 1000)]
| |
| prctl(PR_SET_PDEATHSIG, SIGHUP)
| |
| |
| |
| |
| |
| |
| |

exit() ---- pdeath sig ----> [child gets signal]

(This is what PR_SET_PDEATHSIG does)

©2022, Michael Kerrisk @mkerrisk Once upon an API 28 / 79

Scenario 1

fork()--------------------------+
| \

[parent (UID 1000)] [child (UID 1000)]
| |
| prctl(PR_SET_PDEATHSIG, SIGHUP)
| |
| execve("setuid-root-binary")
| |
| change all UIDs to 1001
| [child is now unsignalable by parent]
| |
| |

exit() child does not get signal!

Child execs set-UID-root binary that subsequently changes
child’s UIDs such that parent can’t signal it
Consequently, parent-death signal is not sent to child

(Expected and correct behavior)

©2022, Michael Kerrisk @mkerrisk Once upon an API 29 / 79

Scenario 2 (a security bug)

fork()--------------------------+
| \

[parent (UID 1000)] [child (UID 1000)]
| |
| prctl(PR_SET_PDEATHSIG, SIGHUP)
| |
| execve("setuid-root-binary")
| |
| change all UIDs to 1001
| [child is now unsignalable by parent]

execve("setuid-1001") |
| |

exit() ---- pdeath sig ----> [child does get signal!]

Parent execs set-UID binary that gives it same UID as child
When binary terminates, parent-death signal is sent to child

I.e., by execing the binary, parent can send signal to child it
couldn’t otherwise have signaled

©2022, Michael Kerrisk @mkerrisk Once upon an API 30 / 79

The fix

In 2007 (t+10), this got fixed
And documented in 2012 (t+15):
The parent-death signal setting is cleared for the child of
a fork(2). It is also cleared when executing a set-user-ID
or set-group-ID binary, or a binary that has associated
capabilities; otherwise, this value is preserved across
execve(2).

Clear pdeath signal when execing privileged program

©2022, Michael Kerrisk @mkerrisk Once upon an API 31 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Threads, part 1

Back to the original patch message:
Any child process which does:
prctl (PR_SET_PDEATHSIG, sig);

will have <sig> delivered to it when its parent
process dies.

If “process termination” means “termination of last thread”,
this turns out not to be true

At least not after we got NPTL threading implementation
in 2003 (t+6)

©2022, Michael Kerrisk @mkerrisk Once upon an API 33 / 79

A bug report

https://bugzilla.kernel.org/show_bug.cgi?id=43300,
David Wilcox:
I have a process that is forking to [create] a child process.
The child process should not exist if the parent process
[exits]. So, I call prctl(PR_SET_PDEATHSIG, SIGKILL) in the
child process to kill it if the parent dies. What ends up
happening is the parent thread calls pthread_exit, and that
thread ends up being the catalyst that kills the child process.

Signal is sent upon termination of creating thread
I.e., the thread that actually called fork()

(Rather than when last thread in parent terminates)

©2022, Michael Kerrisk @mkerrisk Once upon an API 34 / 79

That bug report was in 2012!
(t+15)

(Sometimes, API misdesigns are reported
only much later)

A bug that we can’t fix

And we can’t fix this; Oleg Nesterov in the same bug:
And yes, the current behaviour looks just ugly. The problem
is, unlikely we can change it now, this can obviously break
the applications which rely on the fact that pdeath_signal
is per-thread.

(I.e., some apps might depend on this strange behavior)
But at least we can document it (2015, t+18):
Warning: the "parent" in this case is considered to be the
thread that created this process. In other words, the signal
will be sent when that thread terminates [...], rather than
after all of the threads in the parent process terminate.

Actually, the story is even more complicated... (later)

©2022, Michael Kerrisk @mkerrisk Once upon an API 36 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Does the child get more than a signal?

So, the child gets a signal; is that all?
Eventually (2018, t+21), the manual page noted:
If the child installs a handler using the sigaction(2)
SA_SIGINFO flag, the si_pid field of the siginfo_t argument
of the handler contains the PID of the parent process

Note: it’s the PID (TGID) of the parent process
Not the TID of the terminating thread!
(You wanted consistency in the API misdesigns?)

©2022, Michael Kerrisk @mkerrisk Once upon an API 38 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

What becomes of an orphan?

Suppose the child continues executing after receiving the
parent-death signal...
Once upon a time, an orphaned child would get adopted by
init (PID 1)

But now, things are different...

©2022, Michael Kerrisk @mkerrisk Once upon an API 40 / 79

Subreapers

prctl(PR_SET_CHILD_SUBREAPER, 1) marks a process as
a “subreaper” for any orphaned descendants
A subreaper fulfills the role of init(1) for its descendant
processes. When a process becomes orphaned, then that process
will be reparented to the nearest still living ancestor
subreaper.

If any of my descendants become orphaned, reparent
them to me (not to init)
Linux 3.4, 2012 (t+15)

How do subreapers interact with PR_SET_PDEATHSIG ?

©2022, Michael Kerrisk @mkerrisk Once upon an API 41 / 79

Subreapers

Thanks to subreaper mechanism, a child process can have
a series of parents

(When a subreaper terminates, it’s children are adopted by
next ancestor subreaper)

So, child may get a series of parent-death signals!
Documented in 2018 (t+21)
The parent-death signal is sent upon subsequent termination of
the parent thread and also upon termination of each subreaper
process to which the caller is subsequently reparented.

©2022, Michael Kerrisk @mkerrisk Once upon an API 42 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Threads, part 2

Suppose one of those subreaper processes is multithreaded...
when does child get the parent-death signal?
We already entered strange territory a while back...
So, let’s consider some wild possibilities:

(a) When first thread in subreaper terminates
(b) When last thread in subreaper terminates
(c) When thread group leader in subreaper terminates
(d) Upon termination of each thread in subreaper

©2022, Michael Kerrisk @mkerrisk Once upon an API 44 / 79

But, like those school tests...

(e) none of the above

Threads, part 2

My understanding of kernel’s find_new_reaper():
Child processes are parented by individual threads
When a thread terminates, its children are reparented

And child gets pdeath signal, if it requested it
If parent was single threaded ⇒ reparent to next ancestor
subreaper
Else if multithreaded, reparent to another thread in parent!

Search for new parent is in order of thread creation,
starting with thread group leader
Reparenting to another thread might happen multiple
times as threads terminate in parent

Same behavior for original parent of process that used
PR_SET_PDEATHSIG

©2022, Michael Kerrisk @mkerrisk Once upon an API 47 / 79

Do I dare to document this?
(So far, I did not)

(But, given enough time, users will invent
every possible use case for an API,

or write programs that accidentally depend on
obscure details of API behavior)

(Even if we don’t document it...)

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

What the original author wanted:

Child should get a signal
when parent terminates

What we actually got...

If parent is multithreaded, child gets signal when creating
thread terminates
Child may get multiple signals if parent is multithreaded

of signals depends on order of thread creation in parent!
Each signal has same si_pid value
Accidental exposure of details of kernel’s implementation of
process management

Child gets multiple signals if there are ancestor subreapers
And if those subreapers are multithreaded, see above...

A security bug (signal a process owned by another UID)
Now fixed

The start of an API inconsistency (prctl() “get” operations)

©2022, Michael Kerrisk @mkerrisk Once upon an API 51 / 79

Clearly, many of these behaviors
were unintended

What went wrong?

No one person/group owns the interface
No/insufficient documentation
Insufficient consideration of interaction with other parts of
interface
Behavior evolved with the addition of other interfaces /
kernel features

Some of these behaviors almost certainly changed over time
Decentralized design often fails us

©2022, Michael Kerrisk @mkerrisk Once upon an API 53 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Who owns the interface?
IOW: who gets to say what the interface contract is?

The answer isn’t simple...

(http://man7.org/conf/lpc2008/who_owns_the_interface.pdf)

Do the kernel developers define the interface contract?

It “must” be the kernel developers, right?
They write the code!

But...
What if implementation deviates from intention? (A bug)
What about unforeseen uses of interface?
C library wrappers mediate between kernel and user space

©2022, Michael Kerrisk @mkerrisk Once upon an API 56 / 79

Do the glibc developers define the interface contract?

Is it the glibc developers?
Glibc provides wrappers for most system calls

Sometimes wrappers change or add behavior
But...

In many cases, wrapper is trivial (no behavior change)
Sometimes, it’s a long time before wrapper lands in glibc

18 years until gettid() got a wrapper
https://sourceware.org/bugzilla/show_bug.cgi?id=6399

©2022, Michael Kerrisk @mkerrisk Once upon an API 57 / 79

https://sourceware.org/bugzilla/show_bug.cgi?id=6399

Does documentation define the interface contract?

man-pages documents kernel APIs
Goal: document what kernel guarantees to user space
Documentation can act as specification, describing
developer’s intention

Allows testing for difference between implementation and
intention

But...
Many things remain undocumented
Sometimes implementation is right and docs are wrong :-(

©2022, Michael Kerrisk @mkerrisk Once upon an API 58 / 79

Do user-space developers define the interface contract?

Is it user-space developers?
How could it possibly be the users?
Given enough time, users collectively discover every possible
detail of the API

Deliberately : user discovers API behaviors and explicitly
makes use of them
Accidentally : user writes code that implicitly depends on an
API behavior (including API bugs)

User code may depend on behaviors that implementer hadn’t
considered/was unaware of

Ancient example: oddball use cases for files with
permissions such as rw----r-- !

©2022, Michael Kerrisk @mkerrisk Once upon an API 59 / 79

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

The original PR_SET_PDEATHSIG documentation (1998)

PR_SET_PDEATHSIG sets the parent process death signal of the current process to
arg2 (either a signal value in the range 1..maxsig, or 0 to clear). This is the
signal that the current process will get when its parent dies. This value is
cleared upon a fork().

Compare that with what we have now....

©2022, Michael Kerrisk @mkerrisk Once upon an API 61 / 79

The current PR_SET_PDEATHSIG documentation (2022)

Set the parent-death signal of the calling process to arg2 (either a signal
value in the range 1..maxsig, or 0 to clear). This is the signal that the
calling process will get when its parent dies.

Warning: the "parent" in this case is considered to be the thread that created
this process. In other words, the signal will be sent when that thread
terminates (via, for example, pthread_exit(3)), rather than after all of the
threads in the parent process terminate.

The parent-death signal is sent upon subsequent termination of the parent thread
and also upon termination of each subreaper process (see the description of
PR_SET_CHILD_SUBREAPER above) to which the caller is subsequently reparented.
If the parent thread and all ancestor subreapers have already terminated by the
time of the PR_SET_PDEATHSIG operation, then no parent-death signal is sent to
the caller.

The parent-death signal is process-directed (see signal(7)) and, if the child
installs a handler using the sigaction(2) SA_SIGINFO flag, the si_pid field
of the siginfo_t argument of the handler contains the PID of the parent process.

The parent-death signal setting is cleared for the child of a fork(2). It is
also (since Linux 2.4.36 / 2.6.23) cleared when executing a set-user-ID or
set-group-ID binary, or a binary that has associated capabilities (see
capabilities(7)); otherwise, this value is preserved across execve(2). The
parent-death signal setting is also cleared upon changes to any of the
following thread credentials: effective UID, effective GID, filesystem UID,
or filesystem GID.

©2022, Michael Kerrisk @mkerrisk Once upon an API 62 / 79

Many of these details were documented only
long after the fact...

If they had been documented
at the time,

would we have done things differently?

Documentation

Documentation can come in various forms...
A man-pages patch or a
A really well written commit message

If documentation was written as API is implemented/
modified, it might have helped reviewers spot these problems

Documentation lowers bar for code review
(And provides a spec for testing)

©2022, Michael Kerrisk @mkerrisk Once upon an API 64 / 79

Documentation is a time multiplier
(Photo credit: Robert Bye)

I’ll just ignore the many problems that
insufficient documentation creates for

API consumers

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

Inconsistencies and surprises

Inconsistencies: PR_GET_PDEATHSIG vs PR_GET_DUMPABLE
Return info via function result or via an argument?

2003 addition of NPTL almost certainly changed the
behavior of PR_SET_PDEATHSIG

Child gets signal when creating thread terminates
Child may get multiple signals as threads in parent
terminate one by one

2012 addition of PR_SET_CHILD_SUBREAPER magnified the
previous point
In each case, problem was failure to see the bigger picture

©2022, Michael Kerrisk @mkerrisk Once upon an API 68 / 79

PR_SET_PDEATHSIG is
a small lesson in the school of

“we don’t do decentralized design well”

We’ve had much harsher lessons

Control groups v1,

overloaded CAP_SYS_ADMIN capability,

...

We have too few eyes looking at the big picture

Not enough people with motivation, time, and knowledge
to consider things such as API consistency and interactions

across the interface

Why isn’t there a paid
kernel user-space API maintainer(s)?

Outline

1 Our story begins 11
2 Missing pieces 17
3 Interactions across the interface 21
4 Surprises: execve() 24
5 Surprises: threads 32
6 Missing details: signals 37
7 Surprises: process termination (and subreapers) 39
8 Surprises: threads (again) 43
9 What happened? 49
10 Who owns the interface? 54
11 Insufficient documentation 60
12 Decentralized design often fails us 67
13 In my ideal world... 73

In my ideal world,
many things would happen

(But, I’ll focus on just a few)

Features should have real users

No new API would be merged without a real-world app that
provides a first test of the design (and implementation)
Many times, real users started using API only after it was
merged into kernel

Then we discovered the (usually unfixable) design problems
Example sad story: inotify

https://lwn.net/Articles/605128/

©2022, Michael Kerrisk @mkerrisk Once upon an API 75 / 79

https://lwn.net/Articles/605128/

Commit messages

Every commit message, but especially those that change
interfaces would

Explain why the change is being made
Include explanations of why features are included
Include explanations of why features are not included
Include a version history that explains how patch evolved
over time

(That often helps with two preceding points)

Include URLs referring to mailing list discussions
It’s not so hard, and it will make your patches better...

Take a lesson from Christian Brauner
E.g., 3eb39f4793 and 7f192e3cd3 are a joy to read

©2022, Michael Kerrisk @mkerrisk Once upon an API 76 / 79

Documentation

A man-pages patch would be written in parallel with
development of new API

Not as an after-thought
Documenting an API:

Is a great trigger for developer to reconsider their design
concept
Lowers bar for reviewers to understand (and therefore
comment) on your patch

And of course, end users will thank you for that
documentation

©2022, Michael Kerrisk @mkerrisk Once upon an API 77 / 79

And of course many other things...

Writing tests
Engaging with glibc maintainers
CCing linux-api@vger.kernel.org

©2022, Michael Kerrisk @mkerrisk Once upon an API 78 / 79

Thanks!
Michael Kerrisk, Trainer and Consultant

http://man7.org/training/

mtk@man7.org @mkerrisk

Slides at http://man7.org/conf/
Source code at http://man7.org/tlpi/code/

http://man7.org/training/
http://man7.org/conf/
http://man7.org/tlpi/code/

	Once upon an API 1
	Our story begins 11
	Missing pieces 17
	Interactions across the interface 21
	Surprises: execve() 24
	Surprises: threads 32
	Missing details: signals 37
	Surprises: process termination (and subreapers) 39
	Surprises: threads (again) 43
	What happened? 49
	Who owns the interface? 54
	Insufficient documentation 60
	Decentralized design often fails us 67
	In my ideal world... 73

