Panic Attack

Finding some order in the panic chaos

Guilherme G. Piccoli (lgalia)

2023-09-26 / Kernel Recipes




_ Context

Interest in having a panic log collecting tool on Arch / SteamOS

Analysis of kernel infra available - different use cases:
o kdump == more data collected, heavier on resources
o pstore == log collected on panic -> lightweight, but less data

By playing with kdump/pstore, crossed paths with panic
notifiers

o Panic path is full of trade-offs / conflicting goals

o Panic notifiers discussions, ideas and eventual refactor

Some other orthogonal problems on panic time
o Interrupt storms / Graphics on panic




_ Disclaimer

e Feel free to interrupt with questions
o Multiple concepts / dense topic
o Risks of "assumed knowledge"

e kexec set of recent problems won't be addressed here
o Memory preserving across kexec boots
o SEV / TDX problems with kexec
o Unikernels support, etc.




_ Outline

The genesis of this work: SteamOS

Panic notifiers: discussion and refactor

e Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?




_ Where all started: Steam Deck

e Steam Deck, from Valve
o CPU/APU AMD Zen 2 (custom), 4-cores/8-threads
o 16 GB of RAM / 7" display
o 3 models of NVMe storage (64G, 256G, 512G)




_ Deck's distro: SteamOS 3

e Arch Linux based distro with gamescope (games) and KDE
Plasma (desktop)

e Sophisticated stack for games: Steam, Proton (Wine), DXVK,
VKD3D, etc

e Arch Linux has no kdump official tool

e Steam Deck community would benefit of such tool for panic log
collection!




-equirements: what logs to collect?

e Collect the most logs we can: dmesg (call trace), tasks' state,
memory info

o Though being careful with size - should be easy to share

e |Information that could be used for kernel/HW debugqging

e Rely on in-kernel infrastructure for that - don't reinvent the
wheel




-w to collect such logs? Kernel infra ‘

e kdump: kexec-loaded crash kernel
o kexec to a new kernel to collect info from the broken kernel
o Requires pre-reserved memory (>200MB usually)
o Collects a vmcore (full memory image) of the crashed kernel
o Lots of information, but heavy / hard for users to share it

e pstore: persistent storage log saving
o Save dmesqg during panic time to some backend
o Multiple backends (RAM, UEFI, ACPI, etc)
o Also multiple frontends (oops, ftrace, console, etc)
o Enough amount of information? (dmesg only)

e Both tools benefits from userspace counter-part
o Kdump tooling common (Debian/Fedora), but not Arch




_ Presenting kdumpst

kdumpst is an Arch Linux kdump and pstore tool

Available on AUR, supports GRUB and initcpio / dracut

Defaults to pstore; currently only ramoops backend (UEFI plans)

e Used by default on Steam Deck, submits logs to Valve

But how to improve the amount of logs on dmesg?
panic print FTWI!



https://gitlab.freedesktop.org/gpiccoli/kdumpst
https://aur.archlinux.org/packages/kdumpst

o 4

panic print VS pstore ordering

e panic print parameter allows to show more data on dmesg
during panic
o Tasks info, system memory state, timers

e But such function runs after pstore! So can't collect the data.

e |dea: re-order the code [discussion]
o Move the call earlier in the panic path



https://lore.kernel.org/lkml/20211109202848.610874-4-gpiccoli@igalia.com/

11

crash_kexec()

!

arch code / kexec

YES

local IRQ and
preempt disable

!

dump stack

NO

anic (over-simplified) code path

disable the
other CPUs

!

panic notifiers
and kmsg_dump()

!

arch code / reboot




12

The code re-ordering

/* Simplified function names */

void panic ()

[...]

1f (!panic notifiers)
crash kexec(); /* kdump */

panic notifiers();

kmsg dump (KMSG DUMP PANIC); /* pstore! */

1f (panic notifiers)
crash kexec();

panic print();

[...]




-nd then, the discussion starts...

e Problems with such approach: panic print before kdump is
risky
o [discussion] with Baoquan and others

e Alternative: propose less invasive change, moving that before
pstore only [discussion]

e New problem then: what if users want panic print before
kdump?
o Makes sense if vmcore is too much
o Only possible if we run the panic notifiers before kdump! So
the notifiers journey begins...



https://lore.kernel.org/lkml/20220114183046.428796-1-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220214141308.841525-1-gpiccoli@igalia.com/

_ Outline

The genesis of this work: SteamQOS

Panic notifiers: discussion and refactor

e Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?




Notifier call chains

o |ist of callbacks to be executed (usually) in any order
o There's a (frequently unused) "priority" tune for call ordering

e Multiple types - atomic callbacks, blocking callbacks, etc
o Panic notifiers == list of atomic callbacks executed on panic

/* Example from kernel/rcu/tree stall.h */
/* Don't print RCU CPU stall warnings during a kernel panic. */
static int rcu panic(...)
{
rcu cpu stall suppress = 1;
return NOTIFY DONE;
}
static struct notifier block rcu panic block = {
.notifier call = rcu panic,
I

atomic notifier chain register (&panic notifier list, &rcu panic block);




_ Deep dive into panic notifiers

e Any driver (even OOT) can reqister a notifier, to do...anything!
o Risky for kdump reliability / but sometimes, notifiers could be
necessary

e "Solution”: a new kernel parameter, crash kexec post notifiers
o Proper name for a bazooka shot: all-or-nothing option, runs
ALL notifiers before kdump

e Middle-ground idea: panic notifiers filter! User selects which
notifiers to run
o kdump maintainers kinda welcome the feature: [discussion]
o But really paper over a real issue: notifiers is a no man's land
o Very good analysis from Petr Mladek exposed the need of a

refactor



https://lore.kernel.org/lkml/20220108153451.195121-1-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/YfPxvzSzDLjO5ldp@alley/

_ Mladek's refactor proposal

e Split panic notifiers in more lists, according to their "goals”
o Information ones: extra info dump, stop watchdogs
o Hypervisor/FW poking notifiers
o Others: actions taken when kdump isn't set (LED blink, halt)

e Ordering regarding kdump
o Hypervisor list before kdump
o Info list also before, IF any kmsg dump () is set

o Final list runs only if kdump isn't set

e V1 submitted ~1y ago
o Special thanks to Petr Mladek for the idea and all reviews.
Thanks also Baoquan and Michael Kelly (Hyper-V) for the
great discussions!




q step - fixing current panic notifiers

e First thing: build a list with all existing in-tree panic notifiers
o As of today (6.6-rc2): 47 notifiers (18 on arch/)

e Fix /improve them, before splitting in lists. Some patterns:
o Decouple multi-purpose notifiers

o Change ordering through the notifier's priorities
= Machine halt or firmware-reset - put'em to run last
= Disabling watchdogs (RCU, hung tasks): run ASAP

o Avoid regular locks
= Panic path disables secondary CPUs, interrupts,
preemption
" nmutex trylock() and spin trylock() FTW




Real example: pvpanic

/* drivers/misc/pvpanic/pvpanic.c - simplified code */
static void pvpanic send event () {
- spin lock (&pvpanic lock);

+ 1f (!spin trylock(&pvpanic lock))
+ return;
static int panic panic notify(...) {

pvpanic send event (PVPANIC PANICKED) ;
}

[...]

+ /* Call our notifier very early on panic */

static struct notifier block pvpanic panic nb = {
.notifier call = pvpanic panic notify,

- .priority = 1,
+ .priority = INT MAX,




List splitting (yay, a 4th list!)

Original plan was splitting in 3 lists, but... ended-up with 4

Hypervisors list: hypervisor/FW notification, LED blinking

O Hyper-V, PPC/fadump, pvpanic, LEDs stuff, etc

Informational list: dump extra info, disable watchdogs

O KASLR offsets, RCU/hung task watchdog off, ftrace dump on oops

e Pre-reboot: includes the remaining ones (halt, risky funcs)
O S390 and PPC/pseries FW halt, IPMI interfaces notification

Post-reboot: contains previously hardcoded (arch) final calls
O SPARC "stop" button enabling (if reboot on panic not set)

O List to be renamed on V2 (loop list)



https://lore.kernel.org/lkml/20220427224924.592546-20-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-21-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-22-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-23-gpiccoli@igalia.com/

_ The notifier "levels” model

e One of the biggest questions regarding panic notifiers
o Which ones should run before kdump?
o Usual / possible answer: low risk / necessary ones

e |Introduce the concept of panic notifier levels
o Fine-grained tuning of which lists run before/after kdump
o Defaults to:
= Hypervisor always run before
= Sometimes informational also (if kmsg dump () is set)

e Implementation maps levels into bits and order the lists
o Was gently called "black magic" on review



https://lore.kernel.org/lkml/20220427224924.592546-25-gpiccoli@igalia.com/

_ Subsequent improvements

e Proposal to convert panic print into a panic notifier

o Good acceptance, fits perfectly the informational list

e Stop exporting crash kexec post notifiers
o Sadly some users of panic notifiers forcibly set this
parameter in code

o Hyper-V is one of such users, and they have reasons for
that...




4

yper-V case /| arm64 eustem-erash
handler

Hyper-V requires hypervisor action in case of kdump
o Requires to unload its "vmbus connection" before crash
kernel takes over

x86 does it on crash through machine ops () crash shutdown

o arm64 though doesn't have similar architecture hook

Discussion with arm64 maintainers revealed little interest in
adding that
o Unworthy complexity / not 3 good idea to mimic x86 case

e Forcing panic notifiers seems a last resort for Hyper-V
o Unless some alternative for arm64 is implemented



https://lore.kernel.org/lkml/427a8277-49f0-4317-d6c3-4a15d7070e55@igalia.com/

-os | Cons and follow-up discussion

Exhaustive discussion exposed plenty conflicting views

First of all, not really clear what should run before kdump

o The notifiers lists are incredibly flexible and "loose"

o How to be sure anyone knowledgeable on panic will review?

o Brainstorm: somehow force registering users to add the cb
name to a central place?

e Less is more: too much flexibility is not a good fit for panic
e Also, are notifier lists reliable on panic path?

o What if memory corruption corrupts the list?
o Alternatives? Hardcoded calls? (headers/exports hell)



https://lore.kernel.org/lkml/0d084eed-4781-c815-29c7-ac62c498e216@igalia.com/

_ Next steps / V2

e Rework lists as suggested (move some callbacks here and
there)

e Split submission - first the lists, then the refactor (kdump vs
notifiers order)

e Consider ways of improving panic notifiers review
o Improve documentation
o Central place for reqgistering !?




_ Outline

The genesis of this work: SteamQOS

Panic notifiers: discussion and refactor

Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?




%rs: an interrupt storm tale

e Another painful area to deal with is device state on kdump

e A reqular kexec would handle device's quiesce process
o .shutdown () callback

o Crash kexec (kdump) can't risk that -> way more limited
environment

e Real case: device caused an interrupt storm, kdump couldn't
boot




g

e |ntel NIC running under PCI-PT (SR-10V)
o No in-tree driver - DPDK instead

he problem

e Custom tool collecting NIC stats, triggered weird NIC FW bug
o Symptom: lockups on host, non-responsive system
o (Non-trivial) cause: NIC interrupt storm

e Kdump attempt: unsuccessful -> crash kernel hung on boot
o Guess what? Still the interrupt storm!




_ Look ‘'ma, no PCI reset

e Despite kexec is a new boot, there are many differences from

FW boot
o A fundamental limitation is the lack of PCIl controller reset

e x86 has no "protocol" / standard for root complexes resets
o PPC64 has a FW-aided PCl reset (ppc pci reset phbs)

e Multiple debug attempts later...an idea: clear devices's MSls
on boot
o But how to achieve this? PCl layer is initialized much later

e x86 early PCl infrastructure FTW! (Special thanks to Gavin
Shan)




pci=clearmsi proposal

e Through the early PCI trick, we could clear the MSIs of all PCI
devs

o Interrupt storm was shut-off and kdump boot succeeded
o Patches to linux-pci (~3y ago)

e Some concerns from Bjorn (PCl maintainer)
o First: limited approach -> pci config 16()

o This conf mode access is limited to first domain/segment

e Other concern: solution only for x86
o In principle, this affects more archs



https://lore.kernel.org/linux-pci/20181018183721.27467-1-gpiccoli@canonical.com/

_ Discussion

e Also, was not really clear exactly what was the precise point of
failure
o Thanks Thomas Gleixner for clarifying that
o Interrupt flood happens right when interrupts are enabled on

start kernel ()

e MSIs are DMA writes to a8 memory area (interrupt remapping
tables)
o An IOMMU approach was suggested

= Clearing these mappings and IOMMU error reporting early
in boot

e Proper cleaning routines to run on panic kernel also suggested



https://lore.kernel.org/lkml/87y2js3ghv.fsf@nanos.tec.linutronix.de/

_ Potential next steps

e Attempt implementing the IOMMU ides
o Too limited? What if no IOMMU?

e Investigate other archs to see how's the status
o Reliably reproduce the problem!

e Extend early PCI conf access mode?
o Bjorn would be unhappy




- Outline

The genesis of this work: SteamQOS

Panic notifiers: discussion and refactor

e Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?




_ Final problem: GFX on panic

e GPUs are complex beasts / interrupts are disabled on panic
o Even reqular kexec are challenging for them!

e Currently, no reliable way to dump data on display during panic
o Though it would be great for users to see something on crash
o Reliable GFX on kdump? Wishful thinking




_ Framebuffer reuse

e While working on kdumpst, experimenting with GFX on kdump
o Managed to make it work only with framebuffers
o Why not restore the FB on kdump then?

e Interesting discussion shows it's definitely not trivial
o Once a GPU driver takes over, HW is reprogrammed
o GOP driver (UEFI) programs FB/display
o We'd need to reprogram the device either on panic (ugh) or
on kdump kernel



https://lore.kernel.org/dri-devel/62aab616-53cb-ff9f-c5f3-169c547bd1ee@igalia.com/

_ Current approaches

e Noralf Troannes proposal (~4y ago)
o |terates on available framebuffers, find a suitable one

e Jocelyn Falempe proposal (last week)
o Works with simpledrm currently, API to get a scanout buffer
o Seems on early stages, with great potential / community
acceptance

e Panic time approaches are risky / limited, must be simple
o Not sure if that's possible one day for amdgpu /i915



https://lore.kernel.org/dri-devel/20190311174218.51899-1-noralf@tronnes.org/
https://lore.kernel.org/dri-devel/20230915083307.1185571-1-jfalempe@redhat.com/

werentapproach: FW notification

e What if we print nothing on panic, but defer for FW / next
kernel?

e UEFI panic notification proposal (~1y ago)
o Simple UEFI variable set on kernel panic (through notifiers!)
o Next kernel clears the var (and potentially prints something)
o Simple and flexible - FW could plot a different logo

e UEFI maintainer (Ard) not really convinced
o Suggestions for using UEFI pstore for tracking that
o Orthogonal goals / limited space on UEFI / dmesqg "privacy”

e Next steps: might try to implement that solution in a prototype



https://lore.kernel.org/linux-efi/20220729194532.228403-1-gpiccoli@igalia.com/

_ Conclusion

Quite a long path, from Linux gaming to panic notifiers refactor

e Everything on panic is polemic / conflicting
o "Slightly" long road ahead for the refactor
o V2 of the refactor soon(tm), not so invasive

e HW quiesce on crash kexec is still full of issues
o Interesting area for some research / multi-arch work (IMHO)

GFX on panic: still in early stages, other OSes / game consoles
seems to have it
o The UEFI approach, while kinda orthogonal, it's way simpler




Feel free to reach me on IRC (gpiccoli - OFTC/Libera)






