
Panic Attack
Finding some order in the panic chaos

Guilherme G. Piccoli (Igalia)

2023-09-26 / Kernel Recipes

1

Context

Interest in having a panic log collecting tool on Arch / SteamOS

Analysis of kernel infra available - different use cases:
kdump == more data collected, heavier on resources
pstore == log collected on panic -> lightweight, but less data

By playing with kdump/pstore, crossed paths with panic
notifiers

Panic path is full of trade-offs / conflicting goals
Panic notifiers discussions, ideas and eventual refactor

Some other orthogonal problems on panic time
Interrupt storms / Graphics on panic

2

Disclaimer

Feel free to interrupt with questions
Multiple concepts / dense topic
Risks of "assumed knowledge"

kexec set of recent problems won't be addressed here
Memory preserving across kexec boots
SEV / TDX problems with kexec
Unikernels support, etc.

3

Outline

The genesis of this work: SteamOS

Panic notifiers: discussion and refactor

Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?

4

Where all started: Steam Deck

Steam Deck, from Valve
CPU/APU AMD Zen 2 (custom), 4-cores/8-threads
16 GB of RAM / 7" display
3 models of NVMe storage (64G, 256G, 512G)

5

Deck's distro: SteamOS 3

Arch Linux based distro with gamescope (games) and KDE
Plasma (desktop)

Sophisticated stack for games: Steam, Proton (Wine), DXVK,
VKD3D, etc

Arch Linux has no kdump official tool

Steam Deck community would benefit of such tool for panic log
collection!

6

Requirements: what logs to collect?

Collect the most logs we can: dmesg (call trace), tasks' state,
memory info

Though being careful with size - should be easy to share

Information that could be used for kernel/HW debugging

Rely on in-kernel infrastructure for that - don't reinvent the
wheel

7

How to collect such logs? Kernel infra

kdump: kexec-loaded crash kernel
kexec to a new kernel to collect info from the broken kernel
Requires pre-reserved memory (>200MB usually)
Collects a vmcore (full memory image) of the crashed kernel
Lots of information, but heavy / hard for users to share it

pstore: persistent storage log saving
Save dmesg during panic time to some backend
Multiple backends (RAM, UEFI, ACPI, etc)
Also multiple frontends (oops, ftrace, console, etc)
Enough amount of information? (dmesg only)

Both tools benefits from userspace counter-part
Kdump tooling common (Debian/Fedora), but not Arch

8

Presenting kdumpst

 is an Arch Linux kdump and pstore tool

Available on , supports GRUB and initcpio / dracut

Defaults to pstore; currently only ramoops backend (UEFI plans)

Used by default on Steam Deck, submits logs to Valve

But how to improve the amount of logs on dmesg?
panic_print FTW!

kdumpst

AUR

9

https://gitlab.freedesktop.org/gpiccoli/kdumpst
https://aur.archlinux.org/packages/kdumpst

panic_print VS pstore ordering

panic_print parameter allows to show more data on dmesg

during panic
Tasks info, system memory state, timers

But such function runs after pstore! So can't collect the data.

Idea: re-order the code
Move the call earlier in the panic path

[discussion]

10

https://lore.kernel.org/lkml/20211109202848.610874-4-gpiccoli@igalia.com/

Panic (over-simplified) code path
local IRQ and

preempt disable

dump stack

kdump?crash_kexec() disable the
other CPUs

panic notifiers
and kmsg_dump()

arch code / reboot

arch code / kexec

YES NO

11

The code re-ordering

/* Simplified function names */

void panic()

[...]

 <---------------------|

if (!panic_notifiers) |

 crash_kexec(); /* kdump */ |

 |

panic_notifiers(); |

 |

kmsg_dump(KMSG_DUMP_PANIC); /* pstore! */ |

 |

if (panic_notifiers) |

 crash_kexec(); |

 |

panic_print(); ---------------------------|

[...]

12

And then, the discussion starts...

Problems with such approach: panic_print before kdump is

risky
 with Baoquan and others

Alternative: propose less invasive change, moving that before
pstore only

New problem then: what if users want panic_print before

kdump?
Makes sense if vmcore is too much
Only possible if we run the panic notifiers before kdump! So
the notifiers journey begins...

[discussion]

[discussion]

13

https://lore.kernel.org/lkml/20220114183046.428796-1-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220214141308.841525-1-gpiccoli@igalia.com/

Outline

The genesis of this work: SteamOS

Panic notifiers: discussion and refactor

Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?

14

Notifier call chains

List of callbacks to be executed (usually) in any order
There's a (frequently unused) "priority" tune for call ordering

Multiple types - atomic callbacks, blocking callbacks, etc
Panic notifiers == list of atomic callbacks executed on panic

/* Example from kernel/rcu/tree_stall.h */

/* Don't print RCU CPU stall warnings during a kernel panic. */

static int rcu_panic(...)

{

 rcu_cpu_stall_suppress = 1;

 return NOTIFY_DONE;

}

static struct notifier_block rcu_panic_block = {

 .notifier_call = rcu_panic,

};

atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);

15

Deep dive into panic notifiers

Any driver (even OOT) can register a notifier, to do...anything!
Risky for kdump reliability / but sometimes, notifiers could be
necessary

"Solution": a new kernel parameter, crash_kexec_post_notifiers
Proper name for a bazooka shot: all-or-nothing option, runs
ALL notifiers before kdump

Middle-ground idea: panic notifiers filter! User selects which
notifiers to run

kdump maintainers kinda welcome the feature:
But really paper over a real issue: notifiers is a no man's land
Very good from Petr Mladek exposed the need of a
refactor

[discussion]

analysis

16

https://lore.kernel.org/lkml/20220108153451.195121-1-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/YfPxvzSzDLjO5ldp@alley/

Mladek's refactor proposal

Split panic notifiers in more lists, according to their "goals"
Information ones: extra info dump, stop watchdogs
Hypervisor/FW poking notifiers
Others: actions taken when kdump isn't set (LED blink, halt)

Ordering regarding kdump
Hypervisor list before kdump
Info list also before, IF any kmsg_dump() is set

Final list runs only if kdump isn't set

V1 submitted ~1y ago
Special thanks to Petr Mladek for the idea and all reviews.
Thanks also Baoquan and Michael Kelly (Hyper-V) for the
great discussions!

17

1st step - fixing current panic notifiers

First thing: build a list with all existing in-tree panic notifiers
As of today (6.6-rc2): 47 notifiers (18 on arch/)

Fix / improve them, before splitting in lists. Some patterns:
Decouple multi-purpose notifiers

Change ordering through the notifier's priorities
Machine halt or firmware-reset - put'em to run last
Disabling watchdogs (RCU, hung tasks): run ASAP

Avoid regular locks
Panic path disables secondary CPUs, interrupts,
preemption
mutex_trylock() and spin_trylock() FTW

18

Real example: pvpanic

/* drivers/misc/pvpanic/pvpanic.c - simplified code */

static void pvpanic_send_event() {

- spin_lock(&pvpanic_lock);

+ if (!spin_trylock(&pvpanic_lock))

+ return;

static int panic_panic_notify(...) {

 pvpanic_send_event(PVPANIC_PANICKED);

}

[...]

+ /* Call our notifier very early on panic */

static struct notifier_block pvpanic_panic_nb = {

 .notifier_call = pvpanic_panic_notify,

- .priority = 1,

+ .priority = INT_MAX,

};

19

List splitting (yay, a 4th list!)

Original plan was splitting in 3 lists, but... ended-up with 4

 list: hypervisor/FW notification, LED blinking
Hyper-V, PPC/fadump, pvpanic, LEDs stuff, etc

 list: dump extra info, disable watchdogs
KASLR offsets, RCU/hung task watchdog off, ftrace_dump_on_oops

: includes the remaining ones (halt, risky funcs)
S390 and PPC/pseries FW halt, IPMI interfaces notification

: contains previously hardcoded (arch) final calls
SPARC "stop" button enabling (if reboot on panic not set)

List to be renamed on V2 (loop list)

Hypervisors

Informational

Pre-reboot

Post-reboot

20

https://lore.kernel.org/lkml/20220427224924.592546-20-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-21-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-22-gpiccoli@igalia.com/
https://lore.kernel.org/lkml/20220427224924.592546-23-gpiccoli@igalia.com/

The notifier "levels" model

One of the biggest questions regarding panic notifiers
Which ones should run before kdump?
Usual / possible answer: low risk / necessary ones

Introduce the concept of
Fine-grained tuning of which lists run before/after kdump
Defaults to:

Hypervisor always run before
Sometimes informational also (if kmsg_dump() is set)

Implementation maps levels into bits and order the lists
Was gently called "black magic" on review

panic notifier levels

21

https://lore.kernel.org/lkml/20220427224924.592546-25-gpiccoli@igalia.com/

Subsequent improvements

Proposal to convert panic_print into a panic notifier

Good acceptance, fits perfectly the informational list

Stop exporting crash_kexec_post_notifiers

Sadly some users of panic notifiers forcibly set this
parameter in code
Hyper-V is one of such users, and they have reasons for
that...

22

Hyper-V case / arm64 custom crash
handler

Hyper-V requires hypervisor action in case of kdump
Requires to unload its "vmbus connection" before crash
kernel takes over

x86 does it on crash through machine_ops() crash shutdown

arm64 though doesn't have similar architecture hook

 with arm64 maintainers revealed little interest in
adding that

Unworthy complexity / not a good idea to mimic x86 case

Forcing panic notifiers seems a last resort for Hyper-V
Unless some alternative for arm64 is implemented

Discussion

23

https://lore.kernel.org/lkml/427a8277-49f0-4317-d6c3-4a15d7070e55@igalia.com/

Pros / Cons and follow-up discussion

Exhaustive exposed plenty conflicting views

First of all, not really clear what should run before kdump
The notifiers lists are incredibly flexible and "loose"
How to be sure anyone knowledgeable on panic will review?
Brainstorm: somehow force registering users to add the cb
name to a central place?

Less is more: too much flexibility is not a good fit for panic

Also, are notifier lists reliable on panic path?
What if memory corruption corrupts the list?
Alternatives? Hardcoded calls? (headers/exports hell)

discussion

24

https://lore.kernel.org/lkml/0d084eed-4781-c815-29c7-ac62c498e216@igalia.com/

Next steps / V2

Rework lists as suggested (move some callbacks here and
there)

Split submission - first the lists, then the refactor (kdump vs
notifiers order)

Consider ways of improving panic notifiers review
Improve documentation
Central place for registering !?

25

Outline

The genesis of this work: SteamOS

Panic notifiers: discussion and refactor

Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?

26

Shifting gears: an interrupt storm tale

Another painful area to deal with is device state on kdump

A regular kexec would handle device's quiesce process
.shutdown() callback

Crash kexec (kdump) can't risk that -> way more limited
environment

Real case: device caused an interrupt storm, kdump couldn't
boot

27

The problem
Intel NIC running under PCI-PT (SR-IOV)

No in-tree driver - DPDK instead

Custom tool collecting NIC stats, triggered weird NIC FW bug
Symptom: lockups on host, non-responsive system
(Non-trivial) cause: NIC interrupt storm

Kdump attempt: unsuccessful -> crash kernel hung on boot
Guess what? Still the interrupt storm!

28

Look 'ma, no PCI reset

Despite kexec is a new boot, there are many differences from
FW boot

A fundamental limitation is the lack of PCI controller reset

x86 has no "protocol" / standard for root complexes resets
PPC64 has a FW-aided PCI reset (ppc_pci_reset_phbs)

Multiple debug attempts later...an idea: clear devices's MSIs
on boot

But how to achieve this? PCI layer is initialized much later

x86 early PCI infrastructure FTW! (Special thanks to Gavin
Shan)

29

pci=clearmsi proposal

Through the early PCI trick, we could clear the MSIs of all PCI
devs

Interrupt storm was shut-off and kdump boot succeeded
 to linux-pci (~3y ago)

Some concerns from Bjorn (PCI maintainer)
First: limited approach -> pci_config_16()

This conf mode access is limited to first domain/segment

Other concern: solution only for x86
In principle, this affects more archs

Patches

30

https://lore.kernel.org/linux-pci/20181018183721.27467-1-gpiccoli@canonical.com/

Discussion

Also, was not really clear exactly what was the precise point of
failure

Thanks Thomas Gleixner for that
Interrupt flood happens right when interrupts are enabled on
start_kernel()

MSIs are DMA writes to a memory area (interrupt remapping
tables)

An IOMMU approach was suggested
Clearing these mappings and IOMMU error reporting early
in boot

Proper cleaning routines to run on panic kernel also suggested

clarifying

31

https://lore.kernel.org/lkml/87y2js3ghv.fsf@nanos.tec.linutronix.de/

Potential next steps

Attempt implementing the IOMMU idea
Too limited? What if no IOMMU?

Investigate other archs to see how's the status
Reliably reproduce the problem!

Extend early PCI conf access mode?
Bjorn would be unhappy

32

Outline

The genesis of this work: SteamOS

Panic notifiers: discussion and refactor

Chaos on kdump: a real case of interrupt storm

Challenges of GFX on panic: dream or reality?

33

Final problem: GFX on panic

GPUs are complex beasts / interrupts are disabled on panic
Even regular kexec are challenging for them!

Currently, no reliable way to dump data on display during panic
Though it would be great for users to see something on crash
Reliable GFX on kdump? Wishful thinking

34

Framebuffer reuse

While working on kdumpst, experimenting with GFX on kdump
Managed to make it work only with framebuffers
Why not restore the FB on kdump then?

Interesting shows it's definitely not trivial
Once a GPU driver takes over, HW is reprogrammed
GOP driver (UEFI) programs FB/display
We'd need to reprogram the device either on panic (ugh) or
on kdump kernel

discussion

35

https://lore.kernel.org/dri-devel/62aab616-53cb-ff9f-c5f3-169c547bd1ee@igalia.com/

Current approaches

Noralf Trønnes (~4y ago)
Iterates on available framebuffers, find a suitable one

Jocelyn Falempe (last week)
Works with simpledrm currently, API to get a scanout buffer
Seems on early stages, with great potential / community
acceptance

Panic time approaches are risky / limited, must be simple
Not sure if that's possible one day for amdgpu / i915

proposal

proposal

36

https://lore.kernel.org/dri-devel/20190311174218.51899-1-noralf@tronnes.org/
https://lore.kernel.org/dri-devel/20230915083307.1185571-1-jfalempe@redhat.com/

Different approach: FW notification

What if we print nothing on panic, but defer for FW / next
kernel?

UEFI panic notification (~1y ago)
Simple UEFI variable set on kernel panic (through notifiers!)
Next kernel clears the var (and potentially prints something)
Simple and flexible - FW could plot a different logo

UEFI maintainer (Ard) not really convinced
Suggestions for using UEFI pstore for tracking that
Orthogonal goals / limited space on UEFI / dmesg "privacy"

Next steps: might try to implement that solution in a prototype

proposal

37

https://lore.kernel.org/linux-efi/20220729194532.228403-1-gpiccoli@igalia.com/

Conclusion

Quite a long path, from Linux gaming to panic notifiers refactor

Everything on panic is polemic / conflicting
"Slightly" long road ahead for the refactor
V2 of the refactor soon(tm), not so invasive

HW quiesce on crash kexec is still full of issues
Interesting area for some research / multi-arch work (IMHO)

GFX on panic: still in early stages, other OSes / game consoles
seems to have it

The UEFI approach, while kinda orthogonal, it's way simpler

38

THANKS

Feel free to reach me on IRC (gpiccoli - OFTC/Libera)
39

