Kernel Recipe

wWho am 17

Live / Work

Seattle, WA Kernel (co)maintainer
(sometimes from Nice)

Amlogic SoCs (ARM)

BayLibre Tl Davinci SoCs (ARM)
developer Generic PM domains
co-founder Adaptive Voltage
bizdev scaling (AVS)
ergonomics arm-soc tree (backup)

* _ Pandering...
Je me débrouille en francais

ACK ¢

&
W
oD
A

5

Implement a genpd

ﬁ\] & | E - Oéeneric PM domains

sse smsmiss| |§

0 o congs: Grping

- P?"

Clocks Regulators ===
I NOHZ_IDLE

PM QoS

Aoﬂveo

Driver model: key concept

wteuse dev_gm cps
e it v s, b

o]
O
O . .
o Static | Dynamic
- e
~—w Suspend g Y - B
Resume ")
o . Domis

o]
o]

o
a

J—— [DED peEmes| |
= N Complexity is growing... O
m Wakeups “raCous

- more integrated devices
- more power domains

- micro controllers Kernel is evolving
- PM firmware, etc.

Driver model: key concept

struct dev_pm ops
Exists 1n struct device_driver, struct bus_type, ...

struct dev_pm_ops {

int (*prepare) (struct device *dev);
vold (*complete) (struct device *dev);
int (*suspend) (struct device *dev);
int (*resume) (struct device *dev);

int (*suspend_late) (struct device *dev);
int (*resume_early) (struct device *dev);

ti

echo mem > /sys/power/state

Platform specific: Per-device:
struct platform_suspend_ops struct dev_pm_ops
—>begin ()
—>prepare ()
—>suspend ()
—>prepare ()

—>suspend_late ()
—>suspend_noilrqg()

—>enter ()
—>wake ()
—>resume_nolilrqg/()
—>resume_early ()
—>finish ()
—>resume ()
—>complete ()

—>end ()

Implement a genpd

ﬁ\] & | E - Oéeneric PM domains

sse smsmiss| |§

0 o congs: Grping

- P?"

Clocks Regulators ===
I NOHZ_IDLE

PM QoS

Aoﬂveo

Driver model: key concept

wteuse dev_gm cps
e it v s, b

o]
O
O . .
o Static | Dynamic
- e
~—w Suspend g Y - B
Resume ")
o . Domis

o]
o]

o
a

J—— [DED peEmes| |
= N Complexity is growing... O
m Wakeups “raCous

- more integrated devices
- more power domains

- micro controllers Kernel is evolving
- PM firmware, etc.

Tdle PM: tickless idle

CONETG_MOHZ_IDLE-y

- stop perindic tick when idle.
- only wakes for next "event”
o interrupt

Don't wake up...
caly o press srexe sad go bick

NOHZ_ID

O CPUidle: How deep 1o sleep™

) Bireak event posnt [Dased o enlerient fres)
e
Sorrgmnes syt et

2) Lateney Iolerance
b Q4053348
E——

b gk b s e bt

O Limitations:

cPuidle

O Idle for CPUs

CPU idle s have "deptl
Jr— o
i

e wikeep ey

State Definitions in DT

O - legaey: pltforns-specifc driver

Idle CPUs

O

OK, but why?
simpify drivers
& gne Sat, might manage dlacis
&0 anather clocks, requlators, pinctrl
Driver shauldn't have to care
1 when sy

(1 when dore

Laave tmat to the bus_type or damain

Runtime PM: driver callbacks

Use count: 1 -0

e e
s maisn

Use count: 0

*

Aesrmaare

Runtime PM AF1

Tell Pl cors whatiar dinkca ' inusa
“T'm about to use 1%

Tm for naw*

dovkn: e]
MG LSR GO~ BTG Sapna)
‘Smiaria sock Vamewark Wsage for clack galng

Excolar:

[O0S @sEs s

Idle for devices: Grouping

Devices are aften grouped il domans

tod
pawer gateyy has iatercy impliatiors
‘exemal reguanar remp up, elc.

genpd in DT

Example gerpd:

Example use by device:

From

. I -

Linux: PM demains

- averride aps far a grove of devices

it PM domain present. PM care uses

Aot e oy O

PM domains o

O

Runtime PM

Tdle for devices: Runiime PM

- feness coetrolled by driver, Based oo aetivity

- devices are e

- e device cansot prevess cehers from
nemsime suspendin

does NOT atlecs wser sace

Bonus: powertop “Device stats”

Idle

devices

O

Wain calinac
Spticnal armi

Describe in DT

Implement a genpd

what's new

.. statisbics and debug
turn off regusatar s0e which damains are an
send cmd ta uC

s e lang
frcateacag

G sate damains \d
atways-an domains

Upstream users

w818
i 1324

Generic PM Domains (genpd)

Generic implementation of PM domains

Goal: do "stutf” when all devicas in a domain
become newly idk (or active)

Based onnuslime P
Wihenall devices in domain are runlime suspended.
gan 01

"Wher frst device in darresn & rurime resuned

OGeneric PM domains

under discussion: RFC
Uny i or CPUs and dvioea
cPus

usa gonpi o cles & CPU

B veracton Lutmoce st £ i I
allw runtims suspanded devees 10 sizy

il may g sysiomwiia
Doutcas coukd b n genpd or s compdas damain
g AP domain ar PC fus_type)

Mo campic han el genpa

‘SLpRn for porIITANGS atnE (rat just ki)

Governors in genpd

Alow custom decision making before cuting power

Cusing power and re-enabling takes time
il be off lang enaugh to be ta e worth it

Before power.ok, gevernar s invaked

Buikin examples
o

PM QoS

Quality of Service: PM QoS

System wide: e.97
v bGPt b e
Per-devion

A o corabaes witspach dicen
Gura et P v v

Geut ol e el

. gurrs e v e ey

~lox i by e e

Implement a genpd under discussion: REC
Main callbacks:

Sometimes as simgle a5
->power_off ()

” Unity idle tor CPUs and devices
—>power_an () regster write

" - what's new - usa runtime PM for CPUs
R - use genpd for clusters of CPUs
Optional O maybe... statistics and debul
Dhetan ensemata i S rieh aemains are on ot e ot 1o oy
: -sdatach, send £ o u and how lon, -
genpd in DT g . T that way during eystem wide
Example ganpd: Describe in OT
IRQ-safe domains. A Devices could be In genpd or mare complex domain
< - &.0. ACPI domain ox PCI (bus_type)
always-on domains - more complex than "simple” genpd
Upstream users: Supportfor perfarmance states (not just idle)
vd.B: 18
vl 13: 24
Generic PM Domains (genpd)
Generic implementation of PM domains
Goal: do "stuff" when all devices in a domain
become newly idle (or active}
Governors in genpd
Based on runtime P
- When all devices in domain are runtime suspende...
Allow custam decision making hefore cutting power
genpd-rpewer_oEE ()
- When first device in niman is runtime resumed... Cuting power and re-enabling takes time
geapd->power_on (} 2 will it be off long enaugh ta be to be worth it ?
OK, but why?
Simplify drivers
on one SoC, might manage clacks

. . Before power-aff, governar is invoked
genpd-gav-32 d_ok [}

on another clocks, regulatars, pinctr| 6 e n e Y |C P M d o m a | n S

CPU Built-in examples:

Driver shouldn't have to care o fals

get [} when busy Memory O

put 1} when done [—

Always-on guwemor:
Simple Qo governor

Leave that to the bus_type or domain
Runtime PM: driver callbacks ‘ . O

- Idle for devices: Grouping . S
Use count: 1> 0 Linuwe: PM domains
- saruntdrm_suspand) Devioas e ot pet i doma - override ops for a group of devices
e —— levices are often grouped into domains
fampeisgt b Lo - it PM domain present, PM core uses
o

- power gated as a group

domain eallbacks instead of typa/class/bus

e Quality of Service: PM QoS
- power gating has latency implications e .

- extermal regulator ramp up, ete. staust der_pm g

Syslem-wide: e.g F¥_00S_CEU_DHA_LA
U560 by GPUAIS o CalrminG CHp o 0k S

Per-device

aitach QoS corsiranis win speciic dovies

* O e
PM domains o

Tell PA core whether device s in use

“I'm abaut to use it"

- dewice: pr_runt ime_get 1), _sync(l
- DORE” USe_COUNLi-- , BM_Funtime_resumei)

“I'm done... for now" O
- devic time_put(), _sync()

e
- Dore- use_count—, pm_runtime_suspend()

i

Similar to clock framewark usage far dlock gating

e (),

Runtfime PM

La i)

Idle for devices: Rur

me PM

- per-device idle
- single device at a time
- ileness controlled by drives, based on activity

- devices are independent
- ane deviee cannot prevent others from
suntine suspending

- does NOT affect user space

Bonus: pawertop “Device stats"

Idle devices

Idle for devices: Runtime PM

- per-device idle
- single device at a time

- idleness controlled by driver, based on activity

- devices are independent
- one device cannot prevent others from
runtime suspending

- does NOT affect user space

Bonus: powertop "Device stats”

struct dev_pm_ops {

int (*runtime_suspend) (struct device *dev);
int (*runtime_ resume) (struct device *dev);
int (*runtime_idle) (struct device *dev);

|

Runtime PM AP|

Tell PM core whether device is in use

"I'm about to use it"

- device: pm_runtime_get (), _sync ()
- core: use_count++ , pm_runtime_resume()

"I'm done... for now"
- device: pm_runtime_put (), _sync ()
- core: use_count-- , pm_runtime_suspend()

Similar to clock framework usage for clock gating
-clk _enable (), clk _disable ()

Excellent: Documentation/power/pm_runtime.txt

=

y

Runtime PM: driver callbacks

age == 0 2, runtime suspend

bus_type (domain): ->runtime_suspend ()

Use count: 1 --> 0

- —>runtime_suspend ()
- prepare for low-power state
- ensure wakeups enabled

- save context

Use count: 0 --> 1

- —>runtime_ resume ()

- restore context
- etc.

Autosuspend --- deferred runtime suspend
-pm_runtime_set_autosuspend_delay ()
-pm_runtime_mark_last_busy ()
-pm_runtime_put_autosuspend ()

device: pm_runtime_put ()
PM core: usage == 0 2, runtime suspend
bus type (domain): ->runtime_suspend ()

device: —->runtime_suspend ()

-->(

Runtime PM: driver callbacks

age == 0 2, runtime suspend

bus_type (domain): ->runtime_suspend ()

Use count: 1 --> 0

- —>runtime_suspend ()
- prepare for low-power state
- ensure wakeups enabled

- save context

Use count: 0 --> 1

- —>runtime_ resume ()

- restore context
- etc.

Autosuspend --- deferred runtime suspend
-pm_runtime_set_autosuspend_delay ()
-pm_runtime_mark_last_busy ()
-pm_runtime_put_autosuspend ()

Implement a genpd under discussion: REC
Main callbacks:

Sometimes as simgle a5
->power_off ()

” Unity idle tor CPUs and devices
—>power_an () regster write

" - what's new - usa runtime PM for CPUs
R - use genpd for clusters of CPUs
Optional O maybe... statistics and debul
Dhetan ensemata i S rieh aemains are on ot e ot 1o oy
: -sdatach, send £ o u and how lon, -
genpd in DT g . T that way during eystem wide
Example ganpd: Describe in OT
IRQ-safe domains. A Devices could be In genpd or mare complex domain
< - &.0. ACPI domain ox PCI (bus_type)
always-on domains - more complex than "simple” genpd
Upstream users: Supportfor perfarmance states (not just idle)
vd.B: 18
vl 13: 24
Generic PM Domains (genpd)
Generic implementation of PM domains
Goal: do "stuff" when all devices in a domain
become newly idle (or active}
Governors in genpd
Based on runtime P
- When all devices in domain are runtime suspende...
Allow custam decision making hefore cutting power
genpd-rpewer_oEE ()
- When first device in niman is runtime resumed... Cuting power and re-enabling takes time
geapd->power_on (} 2 will it be off long enaugh ta be to be worth it ?
OK, but why?
Simplify drivers
on one SoC, might manage clacks

. . Before power-aff, governar is invoked
genpd-gav-32 d_ok [}

on another clocks, regulatars, pinctr| 6 e n e Y |C P M d o m a | n S

CPU Built-in examples:

Driver shouldn't have to care o fals

get [} when busy Memory O

put 1} when done [—

Always-on guwemor:
Simple Qo governor

Leave that to the bus_type or domain
Runtime PM: driver callbacks ‘ . O

- Idle for devices: Grouping . S
Use count: 1> 0 Linuwe: PM domains
- saruntdrm_suspand) Devioas e ot pet i doma - override ops for a group of devices
e —— levices are often grouped into domains
fampeisgt b Lo - it PM domain present, PM core uses
o

- power gated as a group

domain eallbacks instead of typa/class/bus

e Quality of Service: PM QoS
- power gating has latency implications e .

- extermal regulator ramp up, ete. staust der_pm g

Syslem-wide: e.g F¥_00S_CEU_DHA_LA
U560 by GPUAIS o CalrminG CHp o 0k S

Per-device

aitach QoS corsiranis win speciic dovies

* O e
PM domains o

Tell PA core whether device s in use

“I'm abaut to use it"

- dewice: pr_runt ime_get 1), _sync(l
- DORE” USe_COUNLi-- , BM_Funtime_resumei)

“I'm done... for now" O
- devic time_put(), _sync()

e
- Dore- use_count—, pm_runtime_suspend()

i

Similar to clock framewark usage far dlock gating

e (),

Runtfime PM

La i)

Idle for devices: Rur

me PM

- per-device idle
- single device at a time
- ileness controlled by drives, based on activity

- devices are independent
- ane deviee cannot prevent others from
suntine suspending

- does NOT affect user space

Bonus: pawertop “Device stats"

Idle devices

000 | 0000 0@

|dle for devices: Grouping

]

Linux: PM domains |
- override ops for a group of devices

Devices are often grouped into domains - if PM domain present, PM core uses

- power gated as a group domain callbacks instead of type/class/bus
- can be nested

- power gating has latency implications struct dev_pm_domain {

struct dev_pm_ops ops;

- external regulator ramp up, etc.

b
Documentation/power/devices.txt

Generic PM Domains (genpd)

Generic implementation of PM domains

Goal: do "stuff" when all devices in a domain
become newly idle (or active)

Based on runtime PM

- When all devices in domain are runtime suspended...
genpd—>power_off ()

- When first device in domain is runtime resumed...
genpd—->power_on ()

Implement a genpd

Main callbacks:

Sometimes as simple as:
—>power_off () P

regster write

—>power_on () clk _disable ()

Optional Or maybe...
—>attach_dev () turn off regulator

—>detach _dev () send cmd to uC

Describe in DT

genpd in DT
Example genpd:

power: power—controller@12340000 {
compatible = "foo,power—-controller";
reg = <0x12340000 0x1000>;
#power—-domain—-cells = <1>;

ti

Example use by device:

leaky—device@12350000 A

compatible = "foo,i-leak-current";
reg = <0x12350000 0x1000>;
power—domains = <&power 0>;

b

From: Documentation/devicetree/bindings/power/power—domain.txt

Governors in genpd

Allow custom decision making before cutting power

Cutting power and re-enabling takes time
? will it be off long enough to be to be worth it ?

Before power-off, governor is invoked
genpd->gov->suspend_ok ()

Built-in examples:
Always-on governor: return false
Simple QoS governor

Quality of Service: PM QoS

System-wide: e.g PM_Q0OS_CPU_DMA_LATENCY
- Used by CPUidle to determine depth of idle state

Per-device

- attach QoS constraints with specific devices
- genpd: prevent PM domain power off

- PM_QOS_FLAG_NO_POWER_OFF

- €.g. genpd: per-device wakeup latency
- DEV_PM_QOS_RESUME_LATENCY

- for use by genpd "governors"

Documentation/power/pm_gos_interface.txt

what's new

statistics and debug
see which domains are on

and how long
needs powertop support!

IRQ-safe domains
always-on domains
Upstream users:

v4.8: 18
v4.13: 24

under discussion: REC

Unify idle for CPUs and devices
- use runtime PM for CPUs
- use genpd for clusters of CPUs

Better interaction between static & runtime PM
- allow runtime suspended devices to stay
that way during system-wide

Devices could be in genpd or more complex domain
- €.9. ACPI domain or PCI (bus_type)
- more complex than "simple" genpd

Support for performance states (not just idle)

Implement a genpd

ﬁ\] & | E - Oéeneric PM domains

sse smsmiss| |§

0 o congs: Grping

- P?"

Clocks Regulators ===
I NOHZ_IDLE

PM QoS

Aoﬂveo

Driver model: key concept

wteuse dev_gm cps
e it v s, b

o]
O
O . .
o Static | Dynamic
- e
~—w Suspend g Y - B
Resume ")
o . Domis

o]
o]

o
a

J—— [DED peEmes| |
= N Complexity is growing... O
m Wakeups ooy

more integrated devices
- more power domains

- micro controllers Kernel is evolving
- PM firmware, etc.

pm_wakeup_event ()

Phew...
that was all
just a bad
dream

Slides under CC-BY-SA 3.0

http://www.baylibre.com/pub/conferences/kr2017/

