
RCU in 2019
(from my perspective related to

work I have been doing)

 Credits

RCU is the great decades-long work of Paul Mckenney and
others. I am relatively new on the scene (~ 1.5 years).

Who am I ; and how I got started with RCU?
● Worked on Linux for a decade or so.

● Heard only 5 people understand RCU. Opportunity !!!!

● Tired of reading RCU traces and logs that made no sense.

● Was running into RCU concepts but didn’t know their meaning.

Time to put all mysteries to and end…

● Turned out I actually love it and it is like puzzle solving.

● Helping community / company with RCU issues, concepts,

improvements, reviewing.

● Started coming up with RCU questions (~1.5 years ago) about why

things could not be done a certain way to which PaulMck quickly

reminded me that they are “correct” but... RCU is complex since it

has to “survive” in the real-world.

Who am I ; and how I got started with RCU?

PaulMck says…

“Here is your nice elegant

little algorithm”

Who am I ; and how I got started with RCU?

PaulMck says…

“Here is your nice elegant

little algorithm equipped

to survive in the Linux

kernel”

Who am I ; and how I got started with RCU?

Agenda
● Introduction

● RCU Flavor consolidation
○ Performance

○ Scheduler Deadlock fixes

● List RCU API improvements (lockdep)

Extra material covered if time permitting:

○ kfree_rcu() batching

○ Dynticks and NOHZ_FULL fixes

Intro: Typical RCU workflow
● Say you have some data that you have to share between a reader/writer

section.
struct shared_data {

int a;

long b;

};

int reader(struct shared_data *sd) { int writer(struct shared_data *sd) {

if (sd->a) sd->b = 1;

return sd->b; sd->a = 2;

return 0; }

}

Intro: Typical RCU workflow
● One way is to use a reader-writer lock.

int reader(struct shared_data *sd) { void writer(struct shared_data *sd) {

read_lock(&sd->rwlock); write_lock(&sd->rwlock);

if (sd->a) sd->b = 1;

ret = sd->b; sd->a = 2;

read_unlock(&sd->rwlock); write_unlock(&sd->rwlock);

return ret; }

}

Intro: Typical RCU workflow

int reader() { void writer() {

struct shared_data *sd, *old_sd;

struct shared_data sd = spin_lock(&sd->lock);

rcu_dereference(global_sd); old_sd = rcu_dereference(global_sd);

rcu_read_unlock(); // READ sd = kmalloc(sizeof(struct shared_data);

if (sd->a) *sd = *old_sd; // COPY

ret = sd->b; sd->a = 2;

rcu_read_unlock(); rcu_assign_pointer(global_sd, sd); // UPDATE

spin_unlock(&sd->lock);

synchronize_rcu();

return ret; kfree(old_sd);

} }

● Or, use RCU:

Intro: Typical RCU workflow
● Writer makes a copy of data and modifies it.

● Readers execute in parallel on unmodified data.

● To know all prior readers are done, writer:
○ commit the modified copy (pointer)

○ Waits for a grace period.

○ After the wait, destroy old data.

○ Writer’s wait marks the start of a grace period.

● Quiescent state (QS) concept - a state that the CPU passes through which signifies

that the CPU is no longer in a read side critical section (tick, context switch, idle

loop, use code, etc).

○ All CPUs must report passage through a QS.

○ Once all CPUs are accounted for, the grace period can end.

Intro: What’s RCU good for - summary
● Fastest Read-mostly synchronization primitive:

○ Readers are almost free regardless of number of concurrent ones. [Caveats]

○ Writes are costly but per-update cost is amortized.

● 1000s or millions of updates can share a grace period, so cost of

grace period cycle (updating shared state etc) is divided.

○ Read and Writer sections execute in parallel.

[Caveats about ‘literally free”]

 o Slide 12: "Readers are almost free": Yes, but caveats do apply:

 (1) CONFIG_PREEMPT=n is free but =y has a small cost (especially unlock()). (2) Possibility of rcu_dereference()

 affecting compiler optimizations. (3) Given that rcu_read_lock()

 and rcu_read_unlock() now imply barrier(), they can also affect compiler optimizations.

Intro: What is RCU and what its RCU good for ?
● More use cases:

○ Wait for completion primitive (used in deadlock free NMI registration, BPF maps)

○ Reference counter replacements

○ Per-cpu reference counting

○ Optimized reader-writer locking (percpu_rwsem)

■ Slow / Fast path switch (rcu-sync)

○ Go through RCUUsage paper for many many usage patterns.

Toy #1 based on ClassicRCU (Docs: WhatIsRCU.txt)

Classic RCU (works only on PREEMPT=n kernels):

 #define rcu_dereference(p) READ_ONCE(p);
 #define rcu_assign_pointer(p, v) smp_store_release(&(p), (v));

 void rcu_read_lock(void) { }

 void rcu_read_unlock(void) { }

 void synchronize_rcu(void)
 {
 int cpu;
 for_each_possible_cpu(cpu)
 run_on(cpu);
 }

 Only talking about TREE_RCU today
TREE_RCU is the most complex and widely used flavor of RCU.

If you are claiming that I am worrying unnecessarily, you are
probably right. But if I didn't worry unnecessarily, RCU wouldn't
work at all!
— Paul McKenney

There’s also TINY RCU but not discussing it.

Intro: How TREE_RCU works?

 qsmask: 1 1

CPU 0 CPU 1

 grpmask: 1 0

 qsmask: 1 1

CPU 2 CPU 3

 grpmask: 0 1

 qsmask: 1 1

TREE_RCU example: Initial State of the tree

 qsmask: 1 0

CPU 0 CPU 1

 grpmask: 1 0

 qsmask: 1 1

CPU 2 CPU 3

 grpmask: 0 1

 qsmask: 1 1

TREE_RCU example: CPU 1 reports QS

 qsmask: 1 0

CPU 0 CPU 1

 grpmask: 1 0

 qsmask: 1 0

CPU 2 CPU 3

 grpmask: 0 1

 qsmask: 1 1

TREE_RCU example: CPU 3 reports QS

(Notice that the 2 QS updates have proceeded without any synchronization needed)

 qsmask: 0 0

CPU 0 CPU 1

 grpmask: 1 0

 qsmask: 1 0

CPU 2 CPU 3

 grpmask: 0 1

 qsmask: 0 1

TREE_RCU example: CPU 0 reports QS

(Now there has been an update at the root node)

 qsmask: 0 0

CPU 0 CPU 1

 grpmask: 1 0

 qsmask: 0 0

CPU 2 CPU 3

 grpmask: 0 1

 qsmask: 0 0

TREE_RCU example: CPU 2 reports QS

(Another update at the root node to mark qs has globally completed -- notice that only 2 global updates
were needed instead of 4. On a system with 1000s of CPUs, this will be at most 64)

Intro: Components of TREE RCU (normal grace period)

GP Thread
(rcu_preempt or

rcu_sched)

CPU 0 CPU 1 CPU 2 CPU 3

softirq softirq softirq softirq

timer timer timer timer

Intro: Life Cycle of a grace period

Waiting for a new
GP request

Force Quiescent
State (FQS) loop
(rcu_gp_fqs_loop)

Are ALL QS marked?
(root node qs_mask == 0)

Mark and
Propagate GP end
down tree
(rcu_gp_cleanup sets
gp_seq of rcu_state, all
nodes)

Queue wake up
callback

(rcu_segcblist_enqueue)

Request a new GP
(rcu_start_this_gp)

Sleep

Continue
Softirq

CB exec

Propagate QS up
TREE

Mark CPU QS

All CPUs done?
(Set Root node qsmask = 0)

Fo
r i

dl
e

C
PU

s

For idle CPUs

Once CPU notices GP is done
(rcu_pending() in the tick path

rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq)

Is a GP in
progress?

Tick Softirq

WriterGP thread

synchronize_rcu

Wake up

 L
en

gt
h

of
 a

 G
P

(C
al

le
r’s

 v
ie

w
)

Propagate start of
GP down the TREE

(rcu_gp_init)

Intro: Where/When is Quiescent state reported
● Transition to / from CPU idle and user mode (a.k.a dyntick-idle transitions)

● Context switch path (If read-lock nesting is 0) -- NOTE: reports a CPU QS but task still blocks GP.

● In the Scheduler tick:

○ Task is not running in IRQ/preempt disable (no more sched/bh readers)

○ Read-lock nesting is 0 (no more preemptible rcu readers)

● In the FQS loop

○ Forcing quiescent states for idle (nohz_idle), usermode (nohz_full), and offline CPUs.

○ Forcing quiescent states for CPUs that do dyntick-idle transitions.

○ Including dyntick idle transitions faked with rcu_momentary_dyntick_idle() such as by

cond_resched() on PREEMPT=n kernels.

○ Give soft hints to CPU’s scheduler tick to resched task (rdp.rcu_urgent_qs)

Intro: Which paths do QS reports happen from?
● CPU local update is cheap:

○ Tick path.

○ Context Switch.

○ Help provided from rcu_read_unlock() if needed.

○ Reporting of a deferred QS reporting (when rcu_read_unlock() could not help).

● Global update of CPU QS -- Expensive, but REQUIRED for GP to end:

○ Softirq (once it sees CPU local QS from tick)

○ CPU going online (rcu_cpu_starting)

○ Grace period thread’s FQS loop:

■ dyntick-idle QS report (Expensive, involves using atomic instructions)

● dyntick-idle transitions (Kernel - > user ; Kernel -> idle)

● cond_resched() in PREEMPT=n kernels does a forced dyntick-idle transition (HACK).

Intro: What happens in softirq ?

CPU 0

softirq

timer

Per-CPU Work:

● QS reporting for CPU and propagate up tree.
● Invoke any callbacks whose GP has completed.

Caveat about callbacks queued on offline CPUs:
PaulMck says:
> And yes, callbacks do migrate away from non-offloaded CPUs that go
> offline. But that is not the common case outside of things like
> rcutorture.

Task is in kernel
mode.

Intro: Grace Period has started, what’s RCU upto?
At around 100ms:

GP THREAD

Sched-Tick

Set Per-CPU
urgent_qs flag

Set task’s
need_resched
flag.

Enter
scheduler

Report
QS

(Note: Scheduler entry can happen either in next TICK or next preempt_enable())

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?
At around 200ms:

GP THREAD

cond_resched()

Request help
from
cond_resched()
for PREEMPT=n

(by setting
Per-cpu
need_heavy_qs
flag)

Report
QS

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?
At around 300ms for NOHZ_FULL CPUs:

GP THREAD

Send IPIs to
CPUs that are
still holding up

RCU read-side
critical section

IPI handler
Turns on TICK

SCHED TICK

SCHED TICK

Report
QS

RCU Read-side
critical section

Intro: Grace Period has started, what’s RCU upto?
At around 1 second of start of GP:

SCHED TICK

Set task’s
need_qs flag

Report QS

Different RCU “flavors”
There are 3 main “flavors” of RCU in the kernel:

Entry into RCU read-side critical section:
1. “sched” flavor:

a. rcu_read_lock_sched();
b. preempt_disable();
c. local_irq_disable();
d. IRQ entry.

2. “BH” flavor:
a. rcu_read_lock_bh();
b. local_bh_disable();
c. SoftIRQ entry.

3. “Preemptible” flavor only in CONFIG_PREEMPT kernels
a. rcu_read_lock();

RCU Flavor Consolidation: Why? Reduce APIs
Problem:
1. Too many APIs for synchronization. Confusion over which one to use!

a. For preempt flavor: call_rcu() and synchronize_rcu().

b. For sched: call_rcu_sched() and synchronize_rcu_sched().

c. For bh flavor: call_rcu_bh() and call_rcu_bh().

2. Duplication of RCU state machine for each flavor …

Now after flavor consolidation: Just call_rcu() and synchronize_rcu().

RCU Flavor Consolidation: Why? Changes to rcu_state

3 rcu_state structures before (v4.19)
● rcu_preempt
● rcu_sched
● rcu_bh

Now just 1 rcu_state structure to handle
all flavors:

● rcu_preempt (Also handles sched
and bh)

Number of GP threads also reduced
from 3 to 1 since state machines have
been merged now.

● Less resources!
● Less code!

RCU Flavor Consolidation: Performance Changes
rcuperf test suite

● Starts N readers and N writers on N CPUs
● Each reader and writer affined to a CPU
● Readers just do rcu_read_lock/rcu_read_unlock in a loop
● Writers start and end grace periods by calling synchronize_rcu repeatedly.
● Writers measure time before/after calling synchronize_rcu.

Locally modified test to do on reserved CPU continuously:
 preempt_disable + busy_wait + preempt_enable in a loop

Note: This is an additional reader-section variant now (sched-RCU) running in
parallel to the existing rcu_read_lock readers (preemptible-RCU).

What could be the expected Results?

RCU Flavor Consolidation
Performance Changes

This is still within RCU specification!

Also note that disabling preemption for so
long is most not acceptable by most
people anyway.

RCU Flavor Consolidation

Notice that synchronize_rcu time was 2x the preempt_disable time, that’s cos:

 synchronize_rcu Wait synchronize_rcu Wait
 |<-------------------->| |--------------------|
 v v v v
<----------> <----------> <----------> <---------> <--------->
 GP GP GP GP GP

GP = long preempt disable duration

Consolidated RCU - The different cases to handle

Say RCU requested special help from the reader section unlock that is holding
up a GP for too long….

preempt_disable();

rcu_read_lock();

do_some_long_activity(); // TICK sets per-task ->need_qs bit

rcu_read_unlock(); // Now need special processing from

 // rcu_read_unlock_special()

preempt_enable();

RCU-preempt reader nested in RCU-sched

Before:
preempt_disable();
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
preempt_enable();

Now:
preempt_disable();
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

preempt_enable(); // Report the QS

Consolidated RCU - The
different cases to handle

RCU-preempt reader nested in RCU-bh

Before:
local_bh_disable(); /* or softirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
local_bh_enable(); /* softirq exit */

Now:
local_bh_disable(); /* or softirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

local_bh_enable(); /* softirq exit */ // Report the QS

Consolidated RCU - The
different cases to handle

RCU-preempt reader nested in local_irq_disable (IRQoff)
(This is a special case where previous reader requested
deferred special processing by setting ->deferred_qs bit)
Before:
local_irq_disable();
rcu_read_lock();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
local_irq_enable();

Now:
local_irq_disable();
rcu_read_lock();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

local_irq_enable(); // CANNOT Report the QS, still deferred.

Consolidated RCU - The
different cases to handle

RCU-preempt reader nested in RCU-sched (IRQoff)
(This is a special case where previous reader requested
deferred special processing by setting ->deferred_qs bit)
Before:
/* hardirq entry */
rcu_read_lock();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
/* hardirq exit */

Now:
/* hardirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

/* hardirq exit */ // Report the QS

Consolidated RCU - The
different cases to handle

RCU-bh reader nested in RCU-preempt reader

Before:
/* hardirq entry */
rcu_read_lock();
rcu_read_unlock()
 -> rcu_read_unlock_special(); // Report the QS
/* hardirq exit */

Now:
/* hardirq entry */
rcu_read_lock();
do_some_long_activity();
rcu_read_unlock();
 -> rcu_read_unlock_special(); // Defer the QS and set

 // rcu_read_unlock_special.deferred_qs
 // bit & set TIF_NEED_RESCHED

/* hardirq exit */ // Report the QS

Consolidated RCU - The
different cases to handle

RCU-bh reader nested in RCU-preempt or
 RCU-sched

Before:
preempt_disable();
/* Interrupt arrives */
/* Raises softirq */
/* Interrupt exits */
__do_softirq();
 -> rcu_bh_qs(); /* Reports a BH QS */
preempt_enable();

Now:
preempt_disable();
/* Interrupt arrives */
/* Raises softirq */
/* Interrupt exits */
__do_softirq(); /* Do nothing -- preemption still disabled */
preempt_enable();

Consolidated RCU - The
different cases to handle

Solution: In case of denial of attack, ksoftirqd’s loop with report QS.
No reader sections expected there:

See commit: d28139c4e967 ("rcu: Apply RCU-bh QSes to RCU-sched and
RCU-preempt when safe")

Consolidated RCU - The different cases to handle

Consolidated RCU - Fixing scheduler deadlocks...
The forbidden scheduler rule… This is NOT allowed (https://lwn.net/Articles/453002/)

“Thou shall not hold RQ/PI locks across an rcu_read_unlock() if thou not
holding it or disabling IRQ across both both the rcu_read_lock() +
rcu_read_unlock()”

IRQ
Disable section
(say due to rq/pi
lock)

Time

rcu_read_lock
Section
(irq off initially)

https://lwn.net/Articles/453002/

Consolidated RCU - Fixing scheduler deadlocks...
The forbidden scheduler rule… This is allowed

IRQ
Disable section
(say due to rq/pi
lock)

rcu_read_lock
section

Time
IRQ
Disable section
(say due to rq/pi
lock)

Time
rcu_read_lock
section

But we have a new problem… Consider case: future rcu_read_unlock_special() might be
called due to a previous one being deferred.

previous_reader()
{

rcu_read_lock();
do_something(); /* Preemption happened here (so need help from rcu_read_unlock_special. */
local_irq_disable(); /* Cannot be the scheduler as we discussed! */
do_something_else();
rcu_read_unlock(); // As IRQs are off, defer QS report but set deferred_qs bit in rcu_read_unlock_special
do_some_other_thing();
local_irq_enable();

}

current_reader() /* QS from previous_reader() is still deferred. */
{

local_irq_disable(); /* Might be the scheduler. */
do_whatever();
rcu_read_lock();
do_whatever_else();
rcu_read_unlock(); /* Must still defer reporting QS once again but safely! */
do_whatever_comes_to_mind();
local_irq_enable();

}

Consolidated RCU - Fixing scheduler deadlocks...

Consolidated RCU - Fixing scheduler deadlocks...
Fixed in commit: 23634eb (“rcu: Check for wakeup-safe conditions in
rcu_read_unlock_special()”)

Solution: Intro rcu_read_unlock_special.b.deferred_qs bit. (Which is set in previous_reader() in previous example).

Raise softirq from _special() only when either of following are true:

● in_irq() (later changed to in_interrupt) - because ksoftirqd wake-up impossible.
● deferred_qs is set which happens in previous_reader() in previous example.

This makes the softirq raising not wake ksoftirqd thus avoiding a scheduler deadlock.

Made detailed notes on scheduler deadlocks:
https://people.kernel.org/joelfernandes/making-sense-of-scheduler-deadlocks-in-rcu

https://lwn.net/Articles/453002/

https://people.kernel.org/joelfernandes/making-sense-of-scheduler-deadlocks-in-rcu
https://lwn.net/Articles/453002/

CONFIG_PROVE_RCU does “built-in” deref check

rcu_read_lock();

 // rcu_dereference checks if rcu_read_lock was called
 x = rcu_dereference(y);

 rcu_read_unlock();

However this can mislead it ...

spin_lock(&my_lock);

 // Perfectly legal but still splats!
 x = rcu_dereference(y);

spin_unlock(&my_lock);

So there’s an API to support such dereference:

spin_lock(&my_lock);

 x = rcu_dereference_protected(y, lockdep_is_held(&my_lock));

spin_unlock(&my_lock);

List RCU usage - hardening
● listRCU APIs: list_for_each_entry_rcu() don’t do any checking.

● Can hide subtle RCU related bugs such as list corruption.

List RCU usage - Example of issue, consider...
/*
 * NOTE: acpi_map_lookup() must be called with rcu_read_lock() or spinlock protection.
 * But nothing checks for that, list corruption will go unnoticed...
 */

struct acpi_ioremap * acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 {
 struct acpi_ioremap *map;

list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 if (map->phys <= phys &&
 phys + size <= map->phys + map->size)
 return map;
 }

List RCU usage - hardening
● Option 1: Introduce new APIs that do checking for each RCU “flavor” :

○ list_for_each_entry_rcu()

○ list_for_each_entry_rcu_bh()

○ list_for_each_entry_rcu_sched()

● And for when locking protection is used instead or reader protection:
○ list_for_each_entry_rcu_protected()

○ list_for_each_entry_rcu_bh_protected()

○ list_for_each_entry_rcu_sched_protected()

● Drawback:

○ Proliferation of APIs...

List RCU usage - hardening
● Option 2: Can do better since RCU backend is now consolidated.

○ So checking whether ANY flavor of RCU reader is held, is sufficient in
list_for_each_entry_rcu()

■ sched
■ bh
■ preemptible RCU

○ And add an optional argument to list_for_each_entry_rcu() to pass a lockdep
expression; so no need for a list_for_each_entry_rcu_protected().

● One API to rule it all !!!!

List RCU usage - hardening
Example usage showing optional expression when lock held: acpi_map_lookup():

#define acpi_ioremap_lock_held() lockdep_is_held(&acpi_ioremap_lock)

struct acpi_ioremap * acpi_map_lookup(acpi_physical_address phys, acpi_size size)
 {
 struct acpi_ioremap *map;

list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
 if (map->phys <= phys &&
 phys + size <= map->phys + map->size)
 return map;
 }

List RCU usage - hardening
Patches:

https://lore.kernel.org/lkml/20190716184656.GK14271@linux.ibm.com/T/#t

https://lore.kernel.org/patchwork/project/lkml/list/?series=401865

Next steps:

● Make CONFIG_PROVE_RCU_LIST the default and get some more testing

https://lore.kernel.org/lkml/20190716184656.GK14271@linux.ibm.com/T/#t
https://lore.kernel.org/patchwork/project/lkml/list/?series=401865

Future work
● More Torture testing on arm64 hardware
● Re-design dynticks counters to keep simple
● List RCU checking updates
● RCU scheduler deadlock checking
● Reducing grace periods due to kfree_rcu().
● Make possible to not embed rcu_head in object
● More RCU testing, experiment with modeling etc.
● More systematic study of __rcu sparse checking.

Thank you …
● For questions, please email the list: rcu@vger.kernel.org

● Follow us on Twitter:

○ paulmckrcu@ joel_linux@ boqun_feng@ srostedt@

mailto:rcu@vger.kernel.org

kfree_rcu() improvements
Problem: Too many kfree_rcu() calls can overwhelm RCU

● Concerns around vhost driver calling kfree_rcu often:
○ https://lore.kernel.org/lkml/20190721131725.GR14271@linux.ibm.com/

○ https://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org/

● Similar bug was fixed by avoiding kfree_rcu() altogether in access()
○ https://lore.kernel.org/lkml/20190729190816.523626281@linuxfoundation.org/

Can we improve RCU to do better and avoid future such issues?

https://lore.kernel.org/lkml/20190721131725.GR14271@linux.ibm.com/
https://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org/
https://lore.kernel.org/lkml/20190729190816.523626281@linuxfoundation.org/

Current kfree_rcu() design (TODO: Add state diagram)

kfree_rcu -> queue call back -> wait for GP -> run kfree from RCU core

● Flooding kfree_rcu() can cause lot of RCU work and grace periods.
● All kfree() happens from softirq as RCU callbacks can execute from softirq

○ Unless nocb or nohz_full is passed of course, still running more callbacks means other
RCU work also has to wait.

kfree_rcu() re-design - first pass
kfree_rcu batching:

● 2 per-CPU list (Call these A and B)
● Each kfree_rcu() request queued on a per-CPU list (no RCU)
● Within KFREE_MAX_JIFFIES (using schedule_delayed_work())

○ Dequeue all requests on A, and Queue on B
○ Call queue_rcu_work() to run a worker to free all B-objects after GP
○ Meanwhile new requests can be queued on A

kfree_rcu() re-design - first pass
Advantages:

● 5X reduction in number of grace periods in rcuperf testing:
○ GPs from ~9000 to ~1700 (per-cpu kfree_rcu flood on 16 CPU

system)
● All kfree() happens in workqueue context and systems schedules work on

the different CPUs.

Drawbacks:

● Since list B cannot be queued into until GP ends, list A keeps growing
● Causes high memory consumption (300-350) MB.

kfree_rcu() re-design - first pass
Drawbacks:

● Since list B cannot be queued into until GP, list A keeps growing
● Miss opportunities and has to wait for future GPs on busy system
● Causes higher memory consumption (300-350) MB.

Opportunity missed to run
at start of GP X+2

B is busy, so any attempts to Queue A to B have to be delayed.

So we keep retrying every 1/50th of a second; and A keeps growing…

1/50th sec 1/50th sec

GP X start

B busy,
grow A

B busy,
grow A

B free, queue A to
B & run after GP B’s objs are reclaimed at start of GP X+3

GP X+1 start GP X+2 start GP X+3 start

kfree_rcu() re-design - second pass
● Introduce a new list C.

○ If B is busy just queue on C and schedule that after GP

Opportunity used to run at
start of GP X+2

GP X start

B busy,
Queue on C B’s objs are reclaimed at start of GP X+2 now!

Thus saving a grace period.

GP X+1 start GP X+2 start GP X+3 start

● Brings down memory consumption by 100-150MB during kfree_rcu
flood

● Maximize bang for GP-bucks!

dyntick RCU counters : intro (TODO: Condense these 9 slides into one
slide)
● RCU needs to know what state CPUs are in
● If we have scheduler tick, no problem! Tick path tells us.

But…

● NOHZ_FULL can turn off tick in both user mode and idle mode.
● NOHZ_IDLE can turn off tick in idle mode

Implemented with a per-CPU atomic counter:

● rcu_data :: atomic_t dynticks : Even for RCU-idle, odd non-RCU-idle

dyntick RCU counters : intro (TODO: Add state-diagrams)

● RCU transitions non-idle <-> idle:
○ kernel <-> user
○ kernel <-> idle
○ irq <-> user
○ irq <-> idle

Each of these transitions cause rcu_data::dynticks to be incremented.

● RCU remains non-idle:
○ irq <-> nmi
○ nmi <-> irq
○ kernel <-> irq
○ Irq <-> kernel

● Each of these transitions cause rcu_data::dynticks to NOT be incremented.

nohz CPUs tick turn off : intro
Scheduler tick is turn off is attempted:
● From cpu idle loop: tick_nohz_idle_stop_tick();
● At the end of IRQs:

irq_exit()

 -> tick_nohz_irq_exit()

 -> tick_nohz_full_update_tick()

tick_nohz_full_update_tick() checks tick_dep_mask. If any bits
are set, tick is not turned off.

nohz CPUs : reasons to keep tick ON
Introduced in commit
d027d45d8a17 ("nohz: New tick dependency mask")

● POSIX CPU timers
● Perf events
● Scheduler

○ (for nohz_full, tick may be turned off if RQ has only 1 task)

The problem: nohz_full and RCU (TODO: Diagram)
Consider the scenario:
● A nohz_full CPU with tick turned off is looping in kernel mode.
● The GP kthread on another CPU notices CPU is taking too long.
● Sets per-cpu hints: rcu_urgent_qs to true and sends resched_cpu().
● IPI runs on nohz_full CPU.
● It enters the scheduler, still nothing happens. Why??
● Grace period continues to stall… resulting in OOM.

Reason:
● Entering the scheduler only means the per-CPU quiescent state is

updated
● Does not mean the global view of the CPU’s quiescent state is

updated...

The problem: nohz_full and RCU
What does updating global view of a CPU QS mean?
Either of the following:
● A. Quiescent state propagates up the RCU TREE to the root
● B. The rcu_data :: dynticks counter of the CPU is updated.

○ This causes the FQS loop to do A on dyntick transition of CPU.

Either of these operations will result in a globally updated view of CPU
QS

Both of these are expensive and need to be done carefully.

The problem: nohz_full and RCU
The global view of a CPU QS is updated only from a few places..
● From the RCU softirq (which is raised from scheduler tick)

○ This does A (tick).

● Kernel/IRQ -> Idle / User transition
○ This does B (dyntick transition).

● cond_resched() in PREEMPT=n kernels
○ This does B (dyntick transition).

● Other special cases where a GP must not be stalled and an RCU
reader is not possible: (rcutorture, multi_cpu_stop() etc.)

The problem: nohz_full and RCU
Possible Solution:

Use option B (forced dynticks transition) in the IPI handler.

● This would be rather hackish. Currently we do this only in very
special cases.

● This will only solve the issue for the current GP, future GPs may
still suffer.

The problem: nohz_full and RCU
Final Solution: Turn back the tick on.

● Add a new “RCU” tick dependency mask.
● RCU FQS loop sets rcu_urgent_qs to true and does resched_cpu()

on the stalling CPU as explained.
● IPI handler arrives at CPU.
● On IPI entry, we set tick dependency mask.
● On IPI exit, the sched-tick code turns the tick back on.

This solution prevents the OOM splats.
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=5b451e66c8f7
8f301c0c6eaacb0246eb13e09974
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=fd6d2b116411
753fcaf929e6523d2ada227aa553

https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=5b451e66c8f78f301c0c6eaacb0246eb13e09974
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=5b451e66c8f78f301c0c6eaacb0246eb13e09974
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=fd6d2b116411753fcaf929e6523d2ada227aa553
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=fd6d2b116411753fcaf929e6523d2ada227aa553

dyntick counter cleanup attempts
Why?

In the previous solution, found a bug where dyntick_nmi_nesting was being set to
(DYNTICK_IRQ_NONIDLE | 2)

However, the code was checking (dyntick_nmi_nesting == 2)

Link to buggy commit:
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=13c4b0759
3977d9288e5d0c21c89d9ba27e2ea1f

However, Paul wants the existing mechanism redesigned rather than cleaned up since it's too
complex: http://lore.kernel.org/r/20190828202330.GS26530@linux.ibm.com

https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=13c4b07593977d9288e5d0c21c89d9ba27e2ea1f
https://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu.git/commit/?h=dev&id=13c4b07593977d9288e5d0c21c89d9ba27e2ea1f
http://lore.kernel.org/r/20190828202330.GS26530@linux.ibm.com

Thank you …
● For questions, please email the list: rcu@vger.kernel.org

● Follow us on Twitter:

○ paulmckrcu@ joel_linux@ boqun_feng@ srostedt@

mailto:rcu@vger.kernel.org

