
So you want to write a Linux driver subsystem?
Michael Turquette <mturquette@baylibre.com>



Who am I? And why am I here?
CEO of BayLibre, Inc

● Previously at Texas Instruments, Linaro, San Francisco start-up
● Contributor to various power management-related topics upstream

Author and co-maintainer of the common clk framework

● Merged in 3.4
● Maintenance for 3 years (and counting)

Lots of mistakes, rewrites and lessons learned.

This talk is a work in progress. Thanks, guinea pigs!





Agenda

1. Overview: what makes a good subsystem?

2. Design considerations

3. (Very) Brief review of CCF design

4. Maintenance



1. What makes a good Linux driver 
subsystem?



What is a Linux driver subsystem?

● Frameworks and libraries; common code implementing a 
standard protocol, interface or behavior

● Providers are Linux kernel drivers that plug into the 
framework and provide access to hardware

● Consumers are Linux kernel drivers or subsystems that 
access the framework through a common API

● A Linux driver can be both a provider and a consumer



Some common subsystems...

● genirq
● clocksource
● clockevent
● pinctrl
● regulator
● clk

● cpufreq
● cpuidle
● pm runtime
● genpd
● alsa/asoc
● v4l2



What makes a good subsystem?

● Solves for the most common cases

● Maintainable

● Concurrency / locking correctness

● Respects the Driver Model

● Architecture/platform independent

● Module safe

● Continuous testing



Linux is not special

● Use good programming practices

● Consolidate code

● Provide helpers and accessors only as needed

● Use coccinelle to find bad patterns and fix them

● Read an algorithm and data structures book



2. Design considerations



Patterns and pitfalls

1. Consumer/provider API split

2. Consumers should not know about the hardware

3. Device versus Resource

4. Follow the Linux Driver Model

5. Locking and concurrent access

6. Protecting your internal data structures

7. Synchronous and async behavior



Consumer/provider API split

● Consumers want to get devices and resources and call 
functions on them
○ clk_get(), clk_set_rate(), clk_enable(), etc

● Providers register the devices and resources
○ clk_register(), clk_unregister(), struct clk_ops, etc

● Split them into separate headers
○ include/linux/clk-provider.h, include/linux/clk.h (consumer)



Example: OMAP3 ISP

cam_mclk OMAP3ISP

cam_xclka

cam_xclkb

drivers/media/platform/omap3isp/isp.c



Knowledge not required!

The framework is incorrectly designed if consumer drivers 
need to know details about the underlying hardware

Write-only APIs are useful for this



Rusty’s API Levels
10. It's impossible to get wrong.

9. The compiler/linker won't let you get it wrong.

8. The compiler will warn if you get it wrong.

7. The obvious use is (probably) the correct one.

6. The name tells you how to use it.

5. Do it right or it will always break at runtime.

4. Follow common convention and you'll get it right.

3. Read the documentation and you'll get it right.

2. Read the implementation and you'll get it right.

1. Read the correct mailing list thread and you'll get it right.

http://goo.gl/SmNqN8

http://goo.gl/yc6E4X

http://goo.gl/SmNqN8
http://goo.gl/SmNqN8
http://goo.gl/yc6E4X
http://goo.gl/yc6E4X


Example: MMC controller

mmc_clk MMC Controller

osc

pll

Propagate
rate
change

Switch
parent
mux



Device versus Resource

CCF manages clock tree hierarchies

● Should clocks be Linux devices?
○ Hundreds of clocks…

● Does it match the data sheet?
○ Clock controller IP blocks expose 

hundreds of clock nodes
○ IP block roughly == Linux device

Bring Your Own Device

vs

Framework Provided Device

● struct regulator.dev versus struct clk
● CCF does not create a struct device

Purely a matter of taste



Reference counting

kobject

● creates sysfs object
● includes kref object for 

reference counting
● get this “for free” with 

struct device

kref

● lightweight alternative to 
kobject

● struct clk_core uses this 
to keep things sane 
around module 
unloading

Don’t forget the release() method!



Follow the Linux driver model gross.

void __init nomadik_clk_init(void)

{

        struct clk *clk;

        clk = clk_register_fixed_rate(NULL,

                "apb_pclk", NULL,

                CLK_IS_ROOT, 0);

        ...



Locking and concurrent access

● Drivers will do crazy shit.
● Protect yourself!

○ Define strict entry points into the framework
○ Wrap all data structure accesses in a sane locking scheme

● Do you need to access the framework in interrupt context?
○ Provide irq-safe entry points using spinlocks
○ Otherwise use mutexes



Example: clk_prepare & clk_enable

CCF has competing needs:

1. clk_enable/clk_disable can be called from interrupt context
2. Some enable ops may have delays/sleeps

clk_{un}prepare supplements clk_{en,dis}able

Mutex protects prepare ops, spinlock protects enable ops

Consumer drivers must always call both, in-order, and do not 
need to know the details of underlying hardware



Breaking i2c crap.

i2c_out_clk

Clock Controller
(i2c Clock Expander

or PMIC)
xtal

foo Device



Example: Reentrant locking
#define get_current() (current_thread_info()->task)

#define current get_current()

static void clk_prepare_lock(void)

{

        if (!mutex_trylock(&prepare_lock)) {

                if (prepare_owner == current) {

                        prepare_refcnt++;

                        return;

                }

                mutex_lock(&prepare_lock);

        }



Protect data structures & bookkeeping

Internal bookkeeping and private data structures should not 
be defined in headers

● Expose opaque handles to consumer drivers
● Think long and hard before giving provider drivers access 

to struct definitions and private pointers
● Reference count accesses to these resources

Drivers will muck with data structures and bookkeeping that 
they have no business touching



Example: per-user reference counting

struct clk {

        struct clk_core *core;

        const char *dev_id;

        const char *con_id;

        unsigned long min_rate;

        unsigned long max_rate;

        struct hlist_node clks_node;

        unsigned int prepare_count;

        unsigned int enable_count;

};

struct clk_core {

        const char *name;

        const struct clk_ops *ops;

        struct clk_hw *hw;

        struct module *owner;

        struct clk_core *parent;

        unsigned int enable_count;

        unsigned int prepare_count;

        …

};



Beware: get/put abuse

static struct clk *foo;

void probe()

{

foo = clk_get(dev, “foo”);

clk_prepare_enable(foo);

clk_put(foo);

}

void module_exit()

{

clk_unprepare_disable(foo);

}



Sync vs Async consumer API behavior
Sync

● execution blocked until 
operation completes

● The right choice for 
some low-level 
operations where 
sequence is critical

● Examples: i2c and clk 
consumer APIs

Async

● execution proceeds after 
operation is initiated

● Increases performance 
in many use cases

● Requires a model where 
waiting on a completion 
event makes sense

● Example: spi consumer 
APIs



Where does the data come from?
● Provide helper functions for the primary source of driver 

data
● In the embedded world this is often Device Tree

● Continuously scan provider drivers and consolidate 
common open-code solutions into helpers

● Design with a firmware interface in mind, but …
● … also do not design only for a single firmware interface



Misc tips & pitfalls
● Test for memory leaks caused by module 

load/unload/reload
● Pass pointers to structs as arguments to functions 

exposed by your subsystem
● Merge tests and hide them behind 

CONFIG_FOO_TEST
● Sort Makefiles lexicographically
● Always terminate array initialization with a comma



3. (Very) Brief review of CCF design



Background on CCF
● clk.h API is pretty old

○ Consumer side of the API

○ pre-dates CCF

○ Multiple implementations

● Single implementation desirable
○ One definition of struct clk

○ Single zImage for ARM (and other arch’s)

○ Code consolidation

● Coincided with other developments



● It is a library

○ BYO(P)D

● Re-entrant for the same context

● Mixed use of mutex and spinlock

● Per-user, opaque handles

● Per-user reference counting kia kref

● Strict consumer/provider API split

● Internal data structures hidden

● Big global locks

● No async api

● Consumer API is shared with competing implementations

CCF design (in a single slide)



4. Maintenance



So now what?
● Merging a new Linux driver subsystem is the beginning 

of the work, not the end

● Set aside 50% of your time to maintain it



Maintaining sanity
● Find a co-maintainer

● Participate in linux-next

● Setup subsystem-specific mailing list and irc channel

● Automate your life



Best advice ever
● Say “No” all the time

○ This is your primary job now!
○ You amy stop being the top contributor to the code that you wrote!
○ A weak reason to not merge a patch is enough reason



Thanks
● Linus Walleij

● Greg Kroah-Hartman

● Mark Brown

● Rafael J. Wysocki

● … many others for hallway advice


