

“Patches carved
into stone tablets”
i.e. why we use email to

develop the kernel
Greg Kroah-Hartman

gregkh@linuxfoundation.org

github.com/gregkh/presentation-stone-tools

Because it is faster
than anything else.

7-8 changes per hour

75 maintainers took
over 364 patches

Kernel releases 4.2.0 – 4.7.0

Kernel reviewers
Greg Kroah-Hartman 9781
David S. Miller 6658
Mark Brown 2815
Andrew Morton 2444
Ingo Molnar 2332
Daniel Vetter 2223
Mauro Carvalho Chehab 2029
Arnaldo Carvalho de Melo 1697
Kalle Valo 1598
Linus Walleij 1447
Doug Ledford 1307
Rafael J. Wysocki 1273
Thomas Gleixner 1219

Kernel releases 4.2.0 – 4.7.0

“It’s a poor
craftsman that

blames his tools.”

“An expert
crafstman knows

how to choose
excellent tools.”

– Jeremy Bowers
https://news.ycombinator.com/item?id=2380679

https://news.ycombinator.com/item?id=2380679
https://news.ycombinator.com/item?id=2380679

GitHub
Bitbucket

GitLab
etc.

GitHub - pros

GitHub - cons

gerrit
reviewboard

etc.

gerrit - pros

gerrit - cons

Plain text email

email - pros

email - pros

email - cons

Documentation/email_clients.txt

git + email
git am

git + email
.muttrc:

macro index A '| git am -s'

Why email matters

Why Linux uses email
●Simple
●Widest audience
●Scalable
●Grows the community

Why Linux uses email
●Simple
●Widest audience
●Scalable
●Grows the community
●No project managers

Pick an excellent tool
for your project, use
email, it’s still better
than anything else.

github.com/gregkh/presentation-stone-tools

“Patches carved
into stone tablets”
i.e. why we use email to

develop the kernel
Greg Kroah-Hartman

gregkh@linuxfoundation.org

github.com/gregkh/presentation-stone-tools

Why does the kernel use such “old” tools!

Get with it greybeards!

Because it is faster
than anything else.

It’s simple.

4000 developers a year
450+ companies a year

We must be doing something right, right?

There is also another reason why we do this,
but I’ll wait until the end to let you know.

7-8 changes per hour

Our average pace, slowly constantly going up.

Faster than any other project out there.

75 maintainers took
over 364 patches

Kernel releases 4.2.0 – 4.7.0

We review lots and lots of patches

Kernel reviewers
Greg Kroah-Hartman 9781
David S. Miller 6658
Mark Brown 2815
Andrew Morton 2444
Ingo Molnar 2332
Daniel Vetter 2223
Mauro Carvalho Chehab 2029
Arnaldo Carvalho de Melo 1697
Kalle Valo 1598
Linus Walleij 1447
Doug Ledford 1307
Rafael J. Wysocki 1273
Thomas Gleixner 1219

Kernel releases 4.2.0 – 4.7.0

13 developers reviewed, and accepted, over
1000 patches last year.

I average only accepting 1/3 of the patches
sent to me.

“It’s a poor
craftsman that

blames his tools.”

Those developers could use any tool!

“An expert
crafstman knows

how to choose
excellent tools.”

– Jeremy Bowers
https://news.ycombinator.com/item?id=2380679

A smart person uses a good tool.

GitHub
Bitbucket

GitLab
etc.

The most popular ones first

GitHub - pros

It’s beautiful
Really beautiful.
Easy to use, simple interface, unlimited

bandwidth, great stuff.

Easy to get drive-by-patches

Use it for small to medium projects.

Good backend testing hooks

Free!!!

GitHub - cons

Does Not Scale!

Pull requests disjoint from mailing list

Discussion happens in odd threads almost like
email, but not quite

Local testing difficult

Issue tracking is a pain in the rear end

Constant merge commits

Requires online access

Delay between patches

gerrit
reviewboard

etc.

Company patch review systems

gerrit - pros

Ugh, none..

Project Managers like it

Sometimes can be scripted

Lots of people are used to it.

Horrid horrid horrid

gerrit - cons

Where to start…

Patch submission difficult
Patch series requires topic branches
Can not see full patch all at once! One click

per file!
Delay in seeing individual patches
Local testing difficult
Impossible to set up and admin

Plain text email

let’s talk about what the kernel uses.

email - pros

This is what the Linux kernel developers use.

Simple, quaint, been around for forever.

Works really really well.

email - pros

Everyone in the world has it
Online access not required
Non-native language supported
Accessability built-in
Fast patch review
Local testing easy
Remote testing possible

Everyone can see what happens!

Loads of email clients out there that work well

My favorite, mutt.

Other command line clients:
Pine/alpine

If you like gui’s there are loads of them, this is
Evolution.

There’s also:
kmail
thunderbird
claws
cylpheed
Tkrat

Loads of them.

Just don’t use a web client for patches.

email - cons

PMs hate it (solution later on...)

eLots suck:
Outlook/Exchange
OS-X Mail
Groupwise
Lotus Notes
Gmail web interface

Almost any web interface

Almost all Linux companies have a box in the
corner to send email out without it touching
exchange/notes (Intel, IBM, Microsoft, etc.)

Documentation/email_clients.txt

How to configure a good email client to
handle patches properly.

Every 3 months, when the merge window
opens up, everything gets sent to Linus from
the subsystem maintainers and Andrew
Morton.

The merge window is 2 weeks long, and
thousands of patches get merged in that
short time.

All of the patches merged to Linus should
have been in the linux-next release, but that
isn't always the case for various reasons.

Linux-next can not just be sent to Linus as
there are things in there that sometimes are
not good enough to be merged just yet, it is
up to the individual subsystem maintainer to
decide what to merge.

git + email
git am

People forget that git was built to apply
patches from email, that was it’s primary
goal in the beginning

Email client integration, one keypress to apply
a patch to the local repo.

git + email
.muttrc:

macro index A '| git am -s'

People forget that git was built to apply
patches from email, that was it’s primary
goal in the beginning

Email client integration, one keypress to apply
a patch to the local repo.

Patchwork is great
- suppliments a mailing list does not replace it
 - provides current status of all posted patches
- shows who is reviewing it, what is left to be

done, etc.
- maintainers can use it to apply and manage

patches

Hooks into CI tools, handles patch series,
versions, everything!

Think of it as gerrit for a mailing list.

Android’s “life of a patch” flowchart

Gerrit is only one tiny part in the middle

Replace that one part with email, and
everything still works, and goes faster.

Android’s “life of a patch” flowchart

Gerrit is only one tiny part in the middle

Replace that one part with email, and
everything still works, and goes faster.

Why email matters

You want your developers to grow, putting
reviews in front of everyone where they
can’t ignore them allows them to learn and
grow faster than anything else.

Your community growes faster this way, use
email if you want your project to be
sustainable.

Why Linux uses email
●Simple
●Widest audience
●Scalable
●Grows the community

Why Linux uses email
●Simple
●Widest audience
●Scalable
●Grows the community
●No project managers

Pick an excellent tool
for your project, use
email, it’s still better
than anything else.

github.com/gregkh/presentation-stone-tools

Obligatory Penguin Picture

