
The story of BPF
A practical guide to land patches

• What BPF stands for?
• Does it matter ?
• The name given to an instruction set 30 years ago by Steven McCanne and

Van Jacobson.

• Little they knew that in 2011 a startup decides to revolutionize
Software Defined Networking.

• Physical -> Virtual
• Servers -> VMs
• Networking gear -> virtual routers, switches, firewalls

• Virtual Machine
• Technology: hypervisor
• KVM, QEMU

• Virtual firewall, Virtual Router, Virtual Switch
• Technology: iovisor

One physical server:
• 5 VMs
• 1 router
• 2 switches
• 5 firewalls

Traditional approach

• VM -> kvm.ko
• Virtual router -> vrouter.ko
• Virtual switch -> vswitch.ko
• Virtual firewall -> vfirewall.ko

PLUMgrid’s solution v1

• iovisor.ko
• switch, router, firewall – binary blobs of x86 code
• pushed to a host by a remote controller
• Including 3rd party NAT, packet captures, etc

• What can go wrong?

• After 4Gbyte of networking traffic the kernel would crash
• 32-bit overflow ?
• Race condition ?

• What can go wrong?

arch/x86/Makefile: KBUILD_CFLAGS += -mno-red-zone

PLUMgrid’s solution v2

• Verify x86 code

• The verifier was born.

• Verification pain points with x86 asm
• Lots of ways to compute an address.
• Lots of memory access instructions.

• Solution: reduced x86 instruction set.
• Hack GCC x86 backend.

• The first iovisor.ko had the verifier and no JIT.

PLUMgrid’s solution v3

• New instruction set (x86 like)
• GCC backend that emits binary code
• iovisor.ko
• The verifier for this instruction set
• JIT to x86
• No interpreter

How to upstream iovisor.ko ?

• Talk to key people when possible

• New instruction set is scary to compiler folks
• Even scarier to kernel maintainers

• Solution: make it look familiar

Make it look familiar

• Is there an instruction set in the kernel with similar properties?
• BPF, iptables, netfilter tables, inet_diag

• Make new instruction set look as close as possible to BPF
• Reuse opcode encoding and 8-byte size of insn
• Call it ‘extended’ BPF

Next steps

• Read netdev@vger mailing list for 6 month
• Understand the land
• Identify key people

• And post the jumbo patch? No.

Build reputation

• Find lockdep report in your area of interest.

My 1st kernel patch:
Move module_free() of x86 JITed memory into a worker.

Keep building reputation…

my kernel commit #5

Finally post eBPF patchset

Did it work?

Finally post eBPF patchset

Nope. It was rejected.

What is the biggest maintainer’s concern?

UAPI !

Need a plan B for eBPF

Add eBPF without exposing it in UAPI

How?

Need a plan B for eBPF

Add eBPF without exposing it in UAPI

Answer: Make existing code faster

Rewrite existing BPF interpreter

Thankfully it was easy to make it 2 times faster.

10% of the speedup came from eBPF instruction set itself.
90% of the speedup from jump-threaded implementation.

That’s how ‘internal BPF’ was created.

Need to disambiguate two BPFs.

Daniel Borkmann came up with a name ‘classic BPF’.

The state of BPF in May 2014:
• cBPF converter to iBPF (internal BPF)
• Interpreter that runs iBPF
• x86, sparc, arm JIT compilers from iBPF to native code

eBPF doesn’t exist yet. There is no verifier either.

Where to apply iBPF ‘engine’ ?

The concepts of the verifier, maps, helpers were proposed.
Programs suppose to run from netif_receive_skb.

The networking use case still struggles.

Arguments against:
- [ei]BPF instruction set is not extensible. Should be using TLV ?
- u8 opcode looks small. eBPF 2.0 will be coming ?
- The verifier is not supported by static analysis theory.
- It bypasses networking stack.

If the mountain will not come to Mohammed…

Strategy: Compromise on networking, pivot eBPF into tracing.
Strategy: Make it look familiar.

F - filter.
Proposal to ‘filter’ perf events.

Reuse verifier, maps, helpers concepts, but instead of network stack
execute programs from perf events and kprobes.

Strategy: Make existing code faster.

Demonstrate that BPF tracing ‘filter’ is faster than predicate tree walker.

Demonstrate that BPF TC ‘classifier’ is faster than TC u32 classifier.

Sad trade-off: clean design vs upstreamability.

Finally on September 26, 2014

eBPF is learning to walk.

89aa075832b0 (net: sock: allow eBPF programs to be attached to sockets, 2014-12-01)
e2e9b6541dd4 (cls_bpf: add initial eBPF support for programmable classifiers, 2015-03-01)
2541517c32be (tracing, perf: Implement BPF programs attached to kprobes, 2015-03-25)

Are we done?

Are we done?

Kernel was just the beginning.

Landing new backend in LLVM was just as difficult.

LLVM community

• Most developers have direct write access
• Anyone can revert anyone else’s commit
• s/MAINTAINERS/CODE_OWNERS.TXT/
• Back then LLVM was using SVN
• Phabricator for diffs
• C++ in CamelStyle

LLVM community

• No UAPI concerns
• Compiler internals are changing a lot
• Backward incompatible backend changes is not a concern

• Kernel UAPI doesn’t justify or restrict LLVM choices
• Continuous integration and testing is mandatory
• Build bots run tests right after diff lands
• Backends have to contribute build bots
• Many operating systems
• Approved diffs might get reverted and re-landed many times

• Monthly meetup at Tied House, Mountain View, CA

LLVM BPF backend
Differential Revision: http://reviews.llvm.org/D6494

llvm-svn: 227008

llvm/CODE_OWNERS.TXT | 4 +
llvm/include/llvm/ADT/Triple.h | 1 +
llvm/include/llvm/IR/Intrinsics.td | 1 +
llvm/include/llvm/IR/IntrinsicsBPF.td | 22 +++++
llvm/lib/Support/Triple.cpp | 8 ++
llvm/lib/Target/BPF/BPF.h | 22 +++++
llvm/lib/Target/BPF/BPF.td | 31 ++++++
llvm/lib/Target/BPF/BPFAsmPrinter.cpp | 87 +++++++++++++++++
llvm/lib/Target/BPF/BPFCallingConv.td | 29 ++++++
llvm/lib/Target/BPF/BPFFrameLowering.cpp | 39 ++++++++
llvm/lib/Target/BPF/BPFFrameLowering.h | 41 ++++++++
llvm/lib/Target/BPF/BPFISelDAGToDAG.cpp | 159 ++++++++++++++++++++++++++++++
llvm/lib/Target/BPF/BPFISelLowering.cpp | 642 +++
...
llvm/lib/Target/LLVMBuild.txt | 2 +-
69 files changed, 4644 insertions(+), 1 deletion(-)

Proposed in Dec 2014

http://reviews.llvm.org/D6494
took 2 month to land in Jan 2015 as
experimental backend.

To graduate BPF backend from experimental status

• It has to have users
• It needs more than one developer
• Developers must help with tree wide refactoring
• Build bot

BPF backend in GCC

• Emits BPF byte code directly. Upstream blocker.
• Unlike LLVM GCC doesn’t have integrated assembler. GCC has to emit plain text
• Would have to make libbfd/gas/ld work

• Being lazy as an upstream strategy sometimes works too
• In 2019 Oracle GCC folks implemented everything

Steps that did NOT help to land patches

• Present at the conferences
• Describe amazing future

Summary: Strategies to land patches

• Learn the community
• Understand maintainer’s concerns
• Build the reputation
• Make new ideas look familiar
• Make existing code faster
• Split big ideas into small building blocks
• Be prepared to compromise

Thank you

What questions do you have?

Slide 42

