
HID-BPF

benjamin.tissoires@{redhat|gmail}.com

Kernel Recipes, Paris, June 1-3, 2022

Benjamin Tissoires
Red Hat

Foreword
still a WIP (v5 is the latest)

API mostly designed but still missing a few bits

2 / 45

HID-BPF == HID+BPF

HID

BPF

HID-BPF: why?

HID-BPF: what?

HID-BPF: how?

3 / 45

Agenda

HID, a Plug & Play protocol

4 / 45

HID?
Human Interface Devices

Win 95 era protocol for handling plug and play USB devices (mice, keyboards)

now Bluetooth, BLE, I2C, Intel/AMD Sensors, (SPI in-progress)

Most devices nowadays are working with generic drivers

5 / 45

HID report descriptor
describes the device protocol in a "simple" language (no loops, conditionals, etc…)

static for each device (in flash)

6 / 45

1 0x05, 0x01, // Usage Page (Generic Desktop)

2 0x09, 0x02, // Usage (Mouse)

3 0xa1, 0x01, // Collection (Application) <-- Application(Mouse)

4 0x09, 0x01, // Usage (Pointer)

5 0xa1, 0x00, // Collection (Physical) <-- Physical(Pointer)

6 0x05, 0x09, // Usage Page (Button)

7 0x15, 0x00, 0x25, 0x01, 0x19, 0x01, 0x29, 0x05, // Logical Min/Max and Usage Min/Max

8 0x75, 0x01, // Report Size (1) <- each usage is 1 bit

9 0x95, 0x05, // Report Count (5) <- we got 5 of them

10 0x81, 0x02, // *Input* (Data,Var,Abs) <--- 5 bits for 5 buttons

11 0x95, 0x03, // Report Count (3)

12 0x81, 0x01, // *Input* (Cnst,Arr,Abs) <--- 3 bits of padding

13 0x05, 0x01, // Usage Page (Generic Desktop)

14 0x16, 0x01, 0x80, 0x26, 0xff, 0x7f, // Logical Min/Max

15 0x09, 0x30, // Usage (X)

16 0x09, 0x31, // Usage (Y)

17 0x75, 0x10, // Report Size (16)

18 0x95, 0x02, // Report Count (2)

19 0x81, 0x06, // *Input* (Data,Var,Rel) <--- X,Y of 16 bits

20 0x15, 0x81, 0x25, 0x7f, // Logical Min/Max (-127,127)

21 0x09, 0x38, // Usage (Wheel)

Documentation
Device Class Definition

HID Usage Tables

7 / 45

https://www.usb.org/document-library/device-class-definition-hid-111
https://www.usb.org/document-library/hid-usage-tables-13

Device Class Definition

there are the equivalent files for I2C, Bluetooth, BLE, SPI

last update: May 27, 2001

defines generic protocol that every HID device must speak

operational model

descriptors (USB + HID report descriptor)

parser of report descriptors

requests

report protocol

The protocol is somewhat stable.

8 / 45

https://www.usb.org/document-library/device-class-definition-hid-111

https://www.usb.org/document-library/device-class-definition-hid-111

HID Usage Tables

last update: April 5, 2021

defines meaning of usages as defined in the report descriptor

X and Y are defined in the Generic Desktop page (0x01) as 0x30 and 0x31

can be extended (and is) by companies

multitouch protocol

USI pens

HW sensors

except for a few exceptions: an update means a new #define in the kernel if we care

9 / 45

https://www.usb.org/document-library/hid-usage-tables-13

` `

https://www.usb.org/document-library/hid-usage-tables-13

HID
Most devices nowadays are working with generic drivers

Except for a few of them that need:
a fixup in the report descriptor (45 drivers out of 82)

hid-sigmamicro.c in v5.17

41 files are under 100 LoC (counted with cloc)

some driver just change the input mapping (i.e. to enable a given key)

hid-razer in v5.17

After attending a few Kernel Recipes edition:

"Can eBPF help?"

10 / 45

` `

` `

BPF?

https://www.kernel.org/doc/html/latest/bpf/index.html

https://docs.cilium.io/en/latest/bpf/

BPF is a highly flexible and efficient virtual machine-like construct in the Linux kernel allowing to execute bytecode at various hook points

in a safe manner. It is used in a number of Linux kernel subsystems, most prominently networking HID*, tracing and security (e.g.

sandboxing).

Allows to add safe kernel space code from the user space (with root access).

* Changed by me :)

11 / 45

See Alexei’s presentation tomorrow

https://www.kernel.org/doc/html/latest/bpf/index.html
https://docs.cilium.io/en/latest/bpf/

HID+BPF

Use BPF in HID drivers to have user-space drivers fixes in the kernel

12 / 45

HID-BPF: base principles
works only on arrays of bytes and talks HID

no access to input, or any other subsystems (LEDs, force feedback, …)

any smart processing needs to be done in userspace or at programming time:

parse HID report descriptor

compute location of various fields

targets a specific device for a given program

enforces GPL programs

simple fixes should be shipped in-tree

programs needs to be CORE (like)

users should not be required to have LLVM 13 / 45

HID-BPF: why?
more convenient to do simple fix and user testing

HID firewall

change the device based on the user context

tracing

14 / 45

HID-BPF: why?
more convenient to do simple fix and user testing

HID firewall

change the device based on the user context

tracing

15 / 45

HID: what it means to add a new quirk?

identification of the issue

new patch created + tests

user needs to recompile the kernel

submission on the LKML

review of the patch

inclusion in branch:

either scheduled for this cycle

either for the next (if big changes, like new driver)

patch goes into Linus’ tree

kernel marked stable or patch backported in stable

distributions take the new kernel

user can drop the custom kernel build

16 / 45

Device x is somewhat broken: a key is not properly reported:

HID: Adding a new quirk with BPF

identification of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the filesystem

data contains the report descriptor of the device.

hid_bpf_rdesc_fixup() is executed once, once the device is exported to userspace.

17 / 45

Device x is somewhat broken: a key is not properly reported:

1 SEC("fmod_ret/hid_bpf_rdesc_fixup")

2 int BPF_PROG(rdesc_fixup, struct hid_bpf_ctx *hid_ctx)

3 {

4 __u8 *data = hid_bpf_get_data(hid_ctx, 0, 4096 /* size */);

5

6 /* Convert Input item from Const into Var */

7 data[40] = 0x02;

8

9 return 0;

10 }

` `

` `

HID: Adding a new quirk with BPF

identification of the issue

new patch BPF program created + tests

user needs to recompile the kernel drops the bpf program into the filesystem

User implication stops here once the BPF program is accepted.

Developers continue to include and ship the fix in the kernel:

submission on the LKML

review of the patch with the bpf program

inclusion in branch

patch goes into Linus’ tree

kernel marked stable or patch backported in stable

distributions take the new kernel

18 / 45

Device x is somewhat broken: a key is not properly reported:

HID-BPF: why?
more convenient to do simple fix and user testing

HID firewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller firmware upgrade over the network?

change the device based on the user context

tracing

19 / 45

` `

HID-BPF: why?
more convenient to do simple fix and user testing

HID firewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller firmware upgrade over the network?

change the device based on the user context

Microsoft Surface Dial example

tracing

20 / 45

` `

HID-BPF: why?
more convenient to do simple fix and user testing

HID firewall

Steam opens up game controllers to the world (with uaccess)

SDL is happy with that

What prevents a Chrome plugin to initiate a controller firmware upgrade over the network?

change the device based on the user context

Microsoft Surface Dial example

tracing

hidraw is good, but not enough

we can trace external requests with eBPF

21 / 45

` `

HID-BPF: what?

22 / 45

HID-BPF: the net-like capability

BPF program, compiled by clang:

Yes, this is a tracing BPF program.

Note: this is executed before hidraw or any driver processing.

23 / 45

Change the incoming data flow

1 SEC("fmod_ret/hid_bpf_device_event")

2 int BPF_PROG(invert_x, struct hid_bpf_ctx *hid_ctx)

3 {

4 __s16 *x = (__s16*)hid_bpf_get_data(hid_ctx, 1 /* offset */, 2 /* size */);

5

6 /* invert X coordinate */

7 *x *= -1;

8

9 return 0;

10 }

` `

HID-BPF: attach our program to a device

24 / 45

A program is attached to a struct hid_device in the kernel, by using the system unique id to attach to it
(to be triggered by udev):

` `

1 struct attach_prog_args {

2 int prog_fd;

3 unsigned int hid;

4 unsigned int flags;

5 int retval;

6 };

7

8 SEC("syscall")

9 int attach_prog(struct attach_prog_args *ctx)

10 {

11 ctx->retval = hid_bpf_attach_prog(ctx->hid,

12 ctx->prog_fd,

13 ctx->flags);

14 return 0;

15 }

1 sudo ./hid_mouse /sys/bus/hid/devices/0018:06CB:CD7A.000A

HID-BPF: Load more than 1 program for
device_event

25 / 45

` `

1 SEC("fmod_ret/hid_bpf_device_event")

2 int BPF_PROG(invert_x, struct hid_bpf_ctx *hid_ctx)

3 {

4 __s16 *x = (__s16*)hid_bpf_get_data(hid_ctx, 1 /* offset */, 2 /* size */);

5

6 /* invert X coordinate */

7 *x *= -1;

8

9 return 0;

10 }

11

12 SEC("fmod_ret/hid_bpf_device_event")

13 int BPF_PROG(invert_y, struct hid_bpf_ctx *hid_ctx)

14 {

15 __s16 *y = (__s16*)hid_bpf_get_data(hid_ctx, 3 /* offset */, 2 /* size */);

16

17 /* invert Y coordinate */

18 *y *= -1;

19

20 return 0;

21 }

HID-BPF: device_event

Useful for neutral zone of a joystick

Filter out unwanted fields in a stream

Fix the report when something should not happen

26 / 45

` `
Benefits/Use cases:

HID-BPF: changing how the device looks and talks

data now contains the report descriptor of the device.

(Un)attaching this program triggers a disconnect/reconnect of the device.

Only 1 program of this type per HID device.

27 / 45

1 SEC("fmod_ret/hid_bpf_rdesc_fixup")

2 int BPF_PROG(rdesc_fixup, struct hid_bpf_ctx *hid_ctx)

3 {

4 __u8 *data = hid_bpf_get_data(hid_ctx, 0, 4096 /* size */);

5

6 /* invert X and Y definitions in the event stream interpretation */

7 data[39] = 0x31;

8 data[41] = 0x30;

9

10 return 0;

11 }

` `

HID-BPF: rdesc_fixup

Fix a bogus report descriptor (key not properly mapped)

Morph a device into something else (Surface Dial into a mouse)

Change the device language (in conjunction with device_event)

28 / 45

` `
Benefits/Use cases:

` `

HID-BPF: communicate with the device

29 / 45

1 struct hid_send_haptics_args {

2 /* data needs to come at offset 0 so we can use ctx as an argument */

3 __u8 data[10];

4 unsigned int hid;

5 };

6

7 SEC("syscall")

8 int send_haptic(struct hid_send_haptics_args *args)

9 {

10 struct hid_bpf_ctx *ctx;

11 int i, ret = 0;

12

13 ctx = hid_bpf_allocate_context(args->hid);

14 if (!ctx)

15 return -1; /* EPERM check */

16

17 ret = hid_bpf_hw_request(ctx, args->data, 10, HID_FEATURE_REPORT,

18 HID_REQ_GET_REPORT);

19 args->retval = ret;

20

21 hid_bpf_release_context(ctx);

22

23 return 0;

24 }

HID-BPF: communicate with the device

Same behavior than the in-kernel function hid_hw_raw_request() .

Can not be used in interrupt context.

Allows:

query device information

put the device into a specific mode

30 / 45

hid_bpf_hw_request()` `

` `

HID-BPF: how?

31 / 45

Architecture

Existing BPF features:

relies on ALLOW_ERROR_INJECTION API to add tracepoints

relies on kfunc API for HID-BPF custom BPF API

Missing BPF features (addressed in the patch series):

custom implementation for attaching to a given HID device

(couple of BPF-core changes for accessing arrays of bytes)

32 / 45

HID-BPF is built on top of BPF, but outside of it:

` `

ALLOW_ERROR_INJECTION

Introduce a tracepoint in kernel code that can be tweaked by eBPF

Introduced by programmer at a given place in the code

33 / 45

` `

Define a tracepoint with side effect
in the kernel module itself: in the eBPF program:

34 / 45

1 __weak noinline int

2 my_tracepoint(struct my_kfunc_data *data)

3 return 0;

4 }

5 ALLOW_ERROR_INJECTION(my_tracepoint, ERRNO);

6

7 int

8 regular_processing_fn(struct my_kfunc_data *data)

9 {

10 int ret;

11

12 ret = my_tracepoint(data)

13 if (ret)

14 return ret;

15

16 /* do some other normal processing */

17

18 return 0;

19 }

1 SEC("fmod_ret/my_tracepoint")

2 int BPF_PROG(tracepoint_fixup,

3 struct my_kfunc_data *data)

4 {

5 if (something)

6 return -1;

7

8 return 0;

9 }

Kfuncs
export a kernel function as eBPF dynamic API

no need to update libbpf

care needs to be taken (it’s like a syscall in the end), but eBPF takes all of the cumbersome part away:

argument checking

availability of the call

versioning

35 / 45

KFuncs? 1/2

36 / 45

in the module itself:

1 noinline int my_kfunc(struct my_kfunc_data *ctx) {

2 return ctx->a + ctx->b;

3 }

4

5 BTF_SET_START(my_kfunc_ids)

6 BTF_ID(func, my_kfunc)

7 BTF_SET_END(hid_bpf_kfunc_ids)

8

9 static const struct btf_kfunc_id_set my_kfunc_set = {

10 .owner = THIS_MODULE,

11 .check_set = &hid_bpf_kfunc_ids,

12 };

13

14 int __init my_module_init(void)

15 {

16 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &my_kfunc_set);

17 }

18

19 late_initcall(my_module_init);

KFuncs? 2/2

37 / 45

in the BPF program:

1 #include "vmlinux.h"

2 #include <bpf/bpf_helpers.h>

3 #include <bpf/bpf_tracing.h>

4

5 char _license[] SEC("license") = "GPL";

6

7 extern int my_kfunc(struct my_kfunc_data *ctx) __ksym;

8

9 SEC("fentry/another_function")

10 int BPF_PROG(bpf_something, struct my_kfunc_data *data)

11 {

12 return my_kfunc(data);

13 }

Wrap-up

38 / 45

HID-BPF: Summary
should simplify easy fixes in the future

allow to add user-space defined behavior depending on the context

can add traces in the events

will allow to live-fix devices without having to update the kernel

no more custom kernel API (sysfs, module parameters)

will not replace in-kernel drivers for devices broken at boot time (keyboards) or for devices that need an

actual driver (hid-rmi.ko)

39 / 45

END

40 / 45

HID-BPF: Summary
should simplify easy fixes in the future

allow to add user-space defined behavior depending on the context

can add traces in the events

will allow to live-fix devices without having to update the kernel

no more custom kernel API (sysfs, module parameters)

will not replace in-kernel drivers for devices broken at boot time (keyboards) or for devices that need an

actual driver (hid-rmi.ko)

41 / 45

Extra slides

42 / 45

Current patch series (v5)
couple of BPF core refinments need merging/discussion:

extend kfunc to return read/write char buffers

extend BPF map kernel API

HID-BPF built outside of BPF-core

use of tracing BPF programs

API built using eBPF kfuncs (kernel functions called from BPF programs)

handling of dispatcher fully in HID-BPF thanks to a preloaded BPF program

access to data through hid_bpf_get_data()

SEC("fmod_ret/hid_bpf_device_event") done IMO

SEC("fmod_ret/hid_bpf_rdesc_fixup") done IMO

SEC("syscall") probably needs more HID kfuncs

43 / 45

` `

` `

` `

` `

HID-BPF: future
finish various entrypoints to be able to handle all use cases

`SEC("fmod_ret/hid_bpf_request") called when a request is emitted to the device

`SEC("fmod_ret/hid_bpf_resume")

…

to implement firewall-like capabilities

might need a hid_bpf_inject_event() at some point

useful for macro keys

add autoloading mechanism of in-kernel BPF programs

just drop the bpf source in the tree and it gets automagically included in a new module

44 / 45

` `

HIDRAW: Other implementation of ioctl
HIDRAW_EVIOC_REVOKE

initial (non-BPF) patch submitted on LKML:

https://lore.kernel.org/linux-input/YmEAPZKDisM2HAsG@quokka/

suggestion to use ALLOW_ERROR_INJECTION

logind can revoke any hidraw fd without code change

https://gitlab.freedesktop.org/bentiss/logind-hidraw

Something similar for USB devices is in the work:

https://lore.kernel.org/linux-usb/20220425132315.924477-1-hadess@hadess.net/

45 / 45

` `

` `

https://lore.kernel.org/linux-input/YmEAPZKDisM2HAsG@quokka/
https://gitlab.freedesktop.org/bentiss/logind-hidraw
https://lore.kernel.org/linux-usb/20220425132315.924477-1-hadess@hadess.net/

