

Ftrace

Frédéric Weisbecker <fweisbec@gmail.com>

Debugger, performance measurements, kernel teacher

Introduction

 Origins from the PREEMPT_RT patch.

 Self-contained kernel tracing tool/framework

 Set of tracers

 Set of user toggable/tunable tracepoints

The Ring Buffer

 Generic ring buffer for all the kernel
 Per cpu write and read
 Lockless write and read
 Read through ftrace layer or directly splice

Ring Buffer operations

 Write side
 Overwrite or stop in before head mode
 Before: Lock and reserve
 After:

 Unlock and commit
 Unlock and discard

 Read side
 Iterator (local reader)
 Read (global consumer)

Tracers

 Most basic tracing unit
 Callbacks:

 Higher level tracing framework operations
 Lower level fs operations

 Use of tracepoints or ad hoc captures
 Insertion to the ring buffer
 Reserved for tracing requiring low level

operations.

Function tracer

 Use of a gcc trick (-pg option)
 Static calls to an mcount function
 Probing on entry
 Careful choice of untraced functions

 Different modes:
 Static mcount() calls
 Dynamic patching

Function trace

 # tracer: function

 #

 # TASK-PID CPU# TIMESTAMP FUNCTION

 # | | | | | |

 soffice.bin-5363 [001] 2744.270302: raise_softirq <-run_local_timers

 soffice.bin-5363 [001] 2744.270303: rcu_pending <-update_process_times

 soffice.bin-5363 [001] 2744.270303: __rcu_pending <-rcu_pending

 soffice.bin-5363 [001] 2744.270304: __rcu_pending <-rcu_pending

 soffice.bin-5363 [001] 2744.270304: printk_tick <-update_process_times

Function graph tracer

 Extends the function tracer by also hooking on
return:

 Live hooking
 Each task has its private stack of function calls

 New facilities:
 Draw a call graph
 Measure execution time of functions

Function graph trace

 # tracer: function_graph
#
CPU DURATION FUNCTION CALLS
| | | | | | |

 0) 0.931 us | _spin_lock();
 0) | page_add_new_anon_rmap() {
 0) | __inc_zone_page_state() {
 0) 0.615 us | __inc_zone_state();
 0) 1.848 us | }
 0) 0.751 us | page_evictable();
 0) | lru_cache_add_lru() {
 0) 0.691 us | __lru_cache_add();
 0) 1.990 us | }
 0) 7.231 us | }
 0) 0.766 us | _spin_unlock();

Graph tracer enhancement

 Clients of entry/return hooks: save custom
datas in task call graph stack

 Print return values (size? Format?)
 Print parameters values (use of dwarf infos)
 Filter by duration (manage a stack to filter?

Userland post-processing?)

Syscalls tracer

 Use existing syscall definition CPP wrapper
 Build a syscall metadata table
 Link syscall metadata table to syscall table

 Fast retrieval of number of parameters on fast
path

 One shot registers saving (struct pt_regs)

 Fast retrieval of metadata on slow path
 Retrieve parameter types and names, link to its

value (pretty-printing)

Syscall trace

 # tracer: syscall
#
TASK-PID CPU# TIMESTAMP FUNCTION
| | | | |
 bash-5606 [000] 2404.628180: sys_dup2(oldfd: a, newfd: 1)
 bash-5606 [000] 2404.628261: sys_dup2 -> 0x1
 bash-5606 [000] 2404.628264: sys_fcntl(fd: a, cmd: 1, arg: 0)
 bash-5606 [000] 2404.628267: sys_fcntl -> 0x1
 bash-5606 [000] 2404.628270: sys_close(fd: a)
 bash-5606 [000] 2404.628273: sys_close -> 0x0
 bash-5606 [000] 2404.628290: sys_rt_sigprocmask(how: 0, set: 0, oset:
6cf808, sigsetsize: 8)
 bash-5606 [000] 2404.628294: sys_rt_sigprocmask -> 0x0

Syscall tracing enhancements

 Build one ftrace event per syscall (ready)
 Provide filters, toggling, no need of a tracer

 Build a hashlist of complex types:
 Pointers to a structure: size?
 Format
 Link syscalls metadata to this hashlist of complex

types. For fast path, have two new fields in the
syscall metadata:

 Bitmap of complex types for this syscall
 Size of parameter to save from the user pointer (or

callback to save in case of very complex parameters).

Some other tracers

 Latency tracing (irqsoff, preemptoff,
preemptirqsoff) requires snapshot mode

 Tracers waiting for ftrace events conversion
 Kmemtrace
 Blktrace
 Boot tracer

 Tracers in a middle stage
 Power, sched, etc...

 Exceptions: mmiotrace...

Ftrace events

 Upper layer of tracepoints
 User-side toggable: the enable/set_event files

 By event
 By subsystem
 All

 Can be filtered using tunable rules

Defining an event

 TRACE_EVENT(name,
TP_PROTO(proto),
TP_ARGS(args),
TP_STRUCT__entry(define fields),
TP_fast_assign(assign_fields),
TP_printk("fmt", fields)

);
 Various set of fields

 Static: __field, __array
 Dynamic: __dynamic_array, __string

Drawbacks of ftrace events

 CPP is somewhat limited
 Need of a specific tracer or dedictated code for

(rare) low level or ad-hoc needs.
 No histogram / statistical tracing

Ideas for the future

 Ftrace is bad at stat/histogram tracing
 Use perfcounter as a powerful bridge and user

interface
 Your ideas!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

