Ftrace

Debugger, performance measurements, kernel teacher

Frédéric Weisbecker <fweisbec@gmail.com>



Introduction

= Origins from the PREEMPT_RT patch.
= Self-contained kernel tracing tool/framework
= Set of tracers

= Set of user toggable/tunable tracepoints



The Ring Buffer

= Generic ring buffer for all the kernel

= Per cpu write and read

= Lockless write and read

= Read through ftrace layer or directly splice



Ring Buffer operations

= Write side

= Overwrite or stop in before head mode
= Before: Lock and reserve
= After:

= Unlock and commit
= Unlock and discard

= Read side

= |terator (local reader)
= Read (global consumer)



Tracers

= Most basic tracing unit
= Callbacks:

= Higher level tracing framework operations
= Lower level fs operations

= Use of tracepoints or ad hoc captures
= Insertion to the ring buffer

= Reserved for tracing requiring low level
operations.



Function tracer

= Use of a gcc trick (-pg option)
= Static calls to an mcount function

= Probing on entry
= Careful choice of untraced functions

= Different modes:

= Static mcount() calls
= Dynamic patching



Function trace

# tracer: function

i
#

TASK-PID CPU# TIMESTAMP FUNCTION
NI | | |
soffice.bin-5363 [001] 2744.270302: raise_softirq <-run_local_timers
soffice.bin-5363 [001] 2744.270303: rcu_pending <-update process_times
soffice.bin-5363 [001] 2744.270303:  rcu_pending <-rcu_pending
soffice.bin-5363 [001] 2744.270304: rcu_pending <-rcu_pending
soffice.bin-5363 [001] 2744.270304: printk_tick <-update process_times



Function graph tracer

= Extends the function tracer by also hooking on
return:

= Live hooking
= Each task has its private stack of function calls

= New facilities:

= Draw a call graph
= Measure execution time of functions



Function graph trace

= # tracer: function_graph

#

# CPU DURATION FUNCTION CALLS

# | | | |||

0) 0.931 us _spin_lock();

0) page _add new_anon_rmap() {
0) __inc_zone_page_state() {
0) 0.615us __inc_zone_state();

0) 1.848 us }

0) 0.751us page_evictable();

0) Iru_cache_add_Iru() {

0) 0.691 us __Iru_cache_add();

0) 1.990 us }

0) 7.231 us }

0) 0.766 us _spin_unlock();




Graph tracer enhancement

= Clients of entry/return hooks: save custom
datas in task call graph stack

= Print return values (size? Format?)
= Print parameters values (use of dwarf infos)

= Filter by duration (manage a stack to filter?
Userland post-processing?)



Syscalls tracer

= Use existing syscall definition CPP wrapper

= Build a syscall metadata table
= Link syscall metadata table to syscall table

= Fast retrieval of number of parameters on fast
path

= One shot registers saving (struct pt_regs)
= Fast retrieval of metadata on slow path

= Retrieve parameter types and names, link to its
value (pretty-printing)



Syscall trace

= # tracer: syscall
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
bash-5606 [000] 2404.628180: sys_dup2(oldfd: a, newfd: 1)
bash-5606 [000] 2404.628261: sys_dup2 -> 0x1
bash-5606 [000] 2404.628264: sys fcntl(fd: a, cmd: 1, arg: 0)
bash-5606 [000] 2404.628267: sys fcntl -> 0x1
bash-5606 [000] 2404.628270: sys close(fd: a)
bash-5606 [000] 2404.628273: sys_close -> 0x0
bash-5606 [000] 2404.628290: sys _rt_sigprocmask(how: 0, set: O, oset:
6¢f808, sigsetsize: 8)
bash-5606 [000] 2404.628294: sys rt_sigprocmask -> 0x0



Syscall tracing enhancements

= Build one ftrace event per syscall (ready)
= Provide filters, toggling, no need of a tracer
= Build a hashlist of complex types:

= Pointers to a structure: size?

= Format

= Link syscalls metadata to this hashlist of complex
types. For fast path, have two new fields in the

syscall metadata:
= Bitmap of complex types for this syscall

= Size of parameter to save from the user pointer (or
callback to save in case of very complex parameters).



Some other tracers

= Latency tracing (irgsoff, preemptoff,
preemptirqsoff) requires snapshot mode

= Tracers waiting for ftrace events conversion

= Kmemtrace
= Blktrace
= Boot tracer

= Tracers in a middle stage
= Power, sched, etc...
= Exceptions: mmiotrace...



Ftrace events

= Upper layer of tracepoints
= User-side toggable: the enable/set_event files

= By event
= By subsystem
= All

= Can be filtered using tunable rules



Defining an event

= TRACE _EVENT(name,
TP_PROTO(proto),
TP_ARGS(args),
TP_STRUCT _entry(define fields),
TP _fast _assign(assign_fields),
TP_printk("fmt", fields)

);
= Various set of fields

= Static: __ field, array
= Dynamic: __dynamic_array, _ string



Drawbacks of ftrace events

= CPP is somewhat limited

= Need of a specific tracer or dedictated code for
(rare) low level or ad-hoc needs.

= No histogram / statistical tracing



Ideas for the future

= Ftrace is bad at stat/histogram tracing

= Use perfcounter as a powerful bridge and user
interface

= Your ideas!



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18

