
Is Video4Linux ready for
all cutting-edge
hardware?

Ezequiel Garcia
ezequiel@collabora.com

2

Is Video4Linux ready for all
cutting-edge hardware?

3

Is Video4Linux ready for all
cutting-edge hardware?

tl;dr: no

4

Agenda
● Traditional V4L APIs
● New APIs
● The future

5

Current
Video4Linux

6

V4L2 API
● VIDIOC_{ENUM_TRY,G,S}_FMT
● VIDIOC_{G,S}_STD, VIDIOC_QUERYSTD
● VIDIOC_REQBUFS
● VIDIOC_QBUF, VIDIOC_DQBUF
● VIDIOC_STREAMON, VIDIOC_STREAMOFF

and more...

7

Stream API

8

Codecs

9

Stateful codecs
● Device handle full bitstream, so drivers shouldn’t do any

parsing. Performing software stream processing, header
generation etc. in the driver is strongly discouraged.

● Uses the traditional V4L (stream-based) API.
● Specification in progress:

[PATCH 0/2] Document memory-to-memory video codec

interfaces

10

Stateful codecs
● Platforms with stateful codecs in mainline

– i.MX

– QCOM

– Exynos

– Mediatek

– and more...

11

Stateful codecs

Headers

Compressed frame

12

Stateless codecs
● Device accelerates the encoding/decoding job.
● Device handles raw compressed bitstreams, but needs

software to do the extra parsing.
● Uses the Request (slice-based) API.
● Specification also in progress:

[RFC PATCH] media: docs-rst: Document m2m stateless

video decoder interface

13

Stateless codecs

Metadata

Compressed frame

14

Stream API

15

Request API

16

Request API

17

Request API

18

What does the
future look?

19

Fences
● Attaching in-fences and out-fences to buffers can reduce

latency and improve efficiency.
● Work in-progress by Gustavo Padovan and Ezequiel Garcia:

[PATCH v10 00/16] V4L2 Explicit Synchronization

20

Without
Fences

21

With
Fences

22

Async UVC
● High-quality devices require more bandwidth from USB

controllers and drivers.
● Multi-core SoCs capable of processing USB packets in

parallel.
● Work by Kieran Bingham from Ideas on Board:

[RFC/RFT PATCH 0/6] Asynchronous UVC

23

Async UVC (before)

static void uvc_video_complete(struct urb *urb)
{
 [..]

 /* copy payload */
 stream->decode(urb, stream, buf, buf_meta);

 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
 /* error handling */
 }
}

24

Async UVC (after)

static void uvc_video_complete(struct urb *urb)
{
 [..]

 /* only process headers */
 stream->decode(uvc_urb, buf, buf_meta);

 [..]
 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
 queue_work(stream->async_wq, &uvc_urb->work);
}

25

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Developing better technologies
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

