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Topics
● Milestones in the evolution of the Virtual 

Memory subsystem
● Virtual Memory latest innovations

– Automatic NUMA balancing
– THP developments
– KSMscale
– userfaultfd

● Postcopy live Migration, etc..
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Virtual Memory (simplified)
Virtual pages
They cost “nothing”
Practically unlimited
on 64bit archs

Physical pages
They cost money!
This is the RAM

arrows = pagetables
virtual to physical mapping
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PageTablesPageTables
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2^9 = 512 arrows, not just 2

● Common code and x86 pagetable format is a tree

● All pagetables are 4KB in size
● Total: grep PageTables /proc/meminfo
● (((2**9)**4)*4096)>>48 = 1 → 48bits → 256 TiB
● 5 levels in v4.13 → (48+9) bits → 57bits → 128 PiB

– Build time to avoid slowdown
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The Fabric of the Virtual Memory
● The fabric are all those data structures that connects to the hardware 

constrained structures like pagetables and that collectively create all the 
software abstractions we're accustomed to
–  tasks, processes, virtual memory areas, mmap (glibc malloc) ...

● The fabric is the most black and white part of the Virtual Memory
● The algorithms doing the computations on those data structures are the 

Virtual Memory heuristics
– They need to solve hard problems with no guaranteed perfect solution
– i.e. when it's the right time to start to unmap pages (swappiness)

● Some of the design didn't change: we still measure how hard it is to 
free memory while we're trying to free it

● All free memory is used as cache and we overcommit by default (not 
excessively by default)
– Android uses: echo 1 >/proc/sys/vm/overcommit_memory
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Physical page and struct page

PAGE_SIZE (4KiB) large physical pagestruct page
64 bytes

PAGE
SIZE
4KiB

...Physical RAMmem_map

64/4096

1.56%
of the RAM
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MM & VMA
● mm_struct aka MM

– Memory of the process
● Shared by threads

● vm_area_struct aka VMA
– Virtual Memory Area

● Created and teardown by mmap and 
munmap

● Defines the virtual address space of an 
“MM”
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Original bitmap...

Active and Inactive list LRU
● The active page LRU preserves the the active memory working set

– only the inactive LRU loses information as fast as use-once I/O goes
– Introduced in 2001, it works good enough also with an arbitrary balance
– Active/inactive list optimum balancing algorithm was solved in 2012-2014

● shadow radix tree nodes that detect re-faults
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Active and Inactive list LRU
$ grep -i active /proc/meminfo 
Active:          3555744 kB
Inactive:        2511156 kB
Active(anon):    2286400 kB
Inactive(anon):  1472540 kB
Active(file):    1269344 kB
Inactive(file):  1038616 kB
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Active LRU working-set 
detection

● From Johannes Weiner

  fault ------------------------+
                                |
             +--------------+   |            +-------------+
  reclaim <- T   inactive   H <-+-- demotion T    active   H <--+
             +--------------+                +-------------+    |
                    |                                           |
                    +-------------- promotion ------------------+

H = Head, T = Tail

     +-memory available to cache-+
     |                           |
     +-inactive------+-active----+
 a b | c d e f g h i | J K L M N |
     +---------------+-----------+
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lru→inactive_age and radix tree 
shadow entries

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage
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Reclaim saving inactive_age

inode/file
radix_tree root

inode/file
radix_tree root

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

inode/file
radix_tree node

pagepage Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++

Exceptional/shadow entry
memcg LRU

LRU reclaim inactive_age++
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Object-based reverse mapping
PHYSICAL PAGE

Anonymous anon_vma

inode
(objrmap)

vma

vma

vma vma

prio_tree

rmap
item

rmap
item

vma

vma

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
Anonymous

PHYSICAL PAGE
Filesystem

PHYSICAL PAGE
KSM
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Active & inactive + rmap
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Many more LRUs
● Separated LRU for anon and file backed 

mappings
● Memcg (memory cgroups) introduced per-

memcg LRUs
● Removal of unfreeable pages from LRUs

– anonymous memory with no swap
– mlocked memory

● Transparent Hugepages in the LRU increase 
scalability further (lru size decreased 512 times)
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Recent Virtual Memory trends
● Optimizing the workloads for you, without manual tuning

– NUMA hard bindings (numactl) → Automatic NUMA 
Balancing

– Hugetlbfs → Transparent Hugepage
– Programs or Virtual Machines duplicating memory → 

KSM
– Page pinning (RDMA/KVM shadow MMU) -> MMU notifier
– Private device memory managed by hand and pinned → 

HMM/UVM (unified virtual memory) for GPU seamlessly 
computing in GPU memory

● The optimizations can be optionally disabled
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Automatic NUMA Balancing 
benchmark

Intel SandyBridge  (Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz)

2 Sockets – 32 Cores with Hyperthreads 

256G Memory

RHEV 3.6

Host bare metal – 3.10.0-327.el7 (RHEL7.2)

VM guest – 3.10.0-324.el7 (RHEL7.2)

VM – 32P , 160G (Optimized for Server)

Storage – Violin 6616 – 16G Fibre Channel

Oracle – 12C , 128G SGA

Test – Running Oracle OLTP workload with increasing user count and 
measuring Trans / min for each run as a metric for comparison
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Automatic NUMA balancing 
configuration

● https://tinyurl.com/zupp9v3     
https://access.redhat.com/ 

● In RHEL7 Automatic NUMA balancing is enabled when:

# numactl --hardware shows multiple nodes
● To disable automatic NUMA balancing:

# echo 0 > /proc/sys/kernel/numa_balancing
● To enable automatic NUMA balancing:

# echo 1 > /proc/sys/kernel/numa_balancing
● At boot:

numa_balancing=enable|disable
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Hugepages
● Traditionally x86 hardware gave us 4KiB 

pages
● The more memory the bigger the overhead 

in managing 4KiB pages
● What if you had bigger pages?

– 512 times bigger → 2MiB
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● Improve CPU performance
– Enlarge TLB size (essential for KVM)
– Speed up TLB miss (essential for KVM)

● Need 3 accesses to memory instead of 4 to refill the TLB
– Faster to allocate memory initially (minor)
– Page colouring inside the hugepage (minor)
– Higher scalability of the page LRUs

● Cons
– clear_page/copy_page less cache friendly

● Clear faulting subpage last included in v4.13 from Andi Kleen and 
Ying Hhuang
–28.3% increase in vm-scalability anon-w-seq

– higher memory footprint sometime
– Direct compaction takes time

Benefit of hugepages
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TLB miss cost:TLB miss cost:
number of accesses to memorynumber of accesses to memory
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● How do we get the benefits of hugetlbfs 
without having to configure anything?

● Any Linux process will receive 2M pages
– if the mmap region is 2M naturally 

aligned
– If compaction succeeds in producing 

hugepages
● Entirely transparent to userland 

Transparent Hugepage design
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● /sys/kernel/mm/transparent_hugepage/enabled

– [always] madvise never
● Always use THP if vma start/end permits

– always [madvise] never
● Use THP only inside MADV_HUGEPAGE

–Applies to khugepaged too
– always madvise [never]

● Never use THP
–khugepaged quits

● Default selected at build time

THP sysfs enabled
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● /sys/kernel/mm/transparent_hugepage/defrag

– [always] defer defer+madvise madvise never
● Always use direct compaction (ideal for long lived allocations)

– always [defer] defer+madvise madvise never
● Defer compaction asynchronously (kswapd/kcompactd)

– always defer [defer+madvise] madvise never
● Direct compaction in MADV_HUGEPAGE, async otherwise

– always defer defer+madvise [madvise] never
● Use direct compaction only inside MADV_HUGEPAGE
● khugepaged enabled in the background

– always defer defer+madvise madvise [never]
● Never use compaction, quit khugepaged too

● Disabling THP is excessive if only direct compaction is too expensive
● KVM uses MADV_HUGEPAGE

– MADV_HUGEPAGE will still use direct compaction

THP defrag - compaction control
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Priming the VM
● To achieve maximum THP utilization you can run 

the two commands below

# cat /proc/buddyinfo 
Node 0, zone      DMA      0      0      1      1      1      1      1      1      0      1      3 
Node 0, zone    DMA32   8357   4904   2670    472    126     82      8      1      0      3      5 
Node 0, zone   Normal   5364  38097    608     63     11      1      1     55      0      0      0 
# echo 3 >/proc/sys/vm/drop_caches 
# cat /proc/buddyinfo 
Node 0, zone      DMA      0      0      1      1      1      1      1      1      0      1      3 
Node 0, zone    DMA32   5989   5445   5235   5022   4420   3583   2424   1331    471    119     25 
Node 0, zone   Normal  71579  58338  36733  19523   6431   1572    559    282    115     29      2 
# echo >/proc/sys/vm/compact_memory 
# cat /proc/buddyinfo 
Node 0, zone      DMA      0      0      1      1      1      1      1      1      0      1      3 
Node 0, zone    DMA32   1218   1161   1227   1240   1135    925    688    502    342    305    369 
Node 0, zone   Normal   7479   5147   5124   4240   2768   1959   1391    814    389    270    149 

4k 8k 16k 32k 64k 2M 4M
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● From Kirill A. Shutemov and Hugh Dickins
– Merged in the v4.8 kernel

● # mount -o remount,huge=always none /dev/shm

– Including small files (i.e. < 2MB in size)
● Very high memory usage on small files

● # mount -o remount,huge=never none /dev/shm
– Current default

● # mount -o remount,huge=within_size none /dev/shm
– Allocate THP if inode i_size can contain hugepages, or if there’s a 

madvise/fadvise hint
● Ideal for apps benefiting from THP on tmpfs!

● # mount -o remount,huge=advise none /dev/shm

– Only if requested through madvise/fadvise

THP on tmpfs
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● shmem uses an internal tmpfs mount for: SysV SHM, memfd, 
MAP_SHARED of /dev/zero or MAP_ANONYMOUS, DRM objects, 
ashmem

● Internal mount is controlled by:
$ cat /sys/kernel/mm/transparent_hugepage/shmem_enabled 

always within_size advise [never] deny force

● deny
– Disable THP for all tmpfs mounts

● For debugging
● force

– Always use THP for all tmpfs mounts
● For testing

THP on shmem
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● Virtual memory to dedup is practically unlimited (even 
on 32bit if you deduplicate across multiple processes)

● The same page content can be deduplicated an 
unlimited number of times

KSMscale

PageKSM
stable_node

rmap_item rmap_item

Virtual address
In userland process

(mm, addr1)

Virtual address
In userland process

(mm, addr2)

https://tinyurl.com/zupp9v3
https://access.redhat.com/
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$ cat /sys/kernel/mm/ksm/max_page_sharing 

256

● KSMscale limits the maximum deduplication for each physical 
PageKSM allocated
– Limiting “compression” to x256 is enough
– Higher maximum deduplication generates diminishing 

returns

● To alter the max page sharing:

$ echo 2 > /sys/kernel/mm/ksm/run

$ echo 512 > /sys/kernel/mm/ksm/max_page_sharing

● Included in v4.13

KSMscale



Copyright © 2017 Red Hat Inc.

48



Copyright © 2017 Red Hat Inc.

49

Why: Memory Externalization
● Memory externalization is about running a program with 

part (or all) of its memory residing on a remote node

● Memory is transferred from the memory node to the 
compute node on access

● Memory can be transferred from the compute node to the 
memory node if it's not frequently used during memory 
pressure

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

memory
pressure
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Postcopy live migration
● Postcopy live migration is a form of memory 

externalization

● When the QEMU compute node (destination) faults on a 
missing page that resides in the memory node (source) the 
kernel has no way to fetch the page

– Solution: let QEMU in userland handle the pagefault

Partially funded by the Orbit European Union project

Node 0Compute node
Local Memory

Node 0Memory node
Remote Memory

userfault

QEMU
source

QEMU
destination

Postcopy live migration
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userfaultfd latency
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Userfaults triggered on pages that were already in network-flight are 
instantaneous. Background transfer seeks at the last userfault address.
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KVM precopy live migration
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KVM postcopy live migration
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# virsh migrate .. --postcopy --timeout <sec> --timeout-postcopy
# virsh migrate .. --postcopy --postcopy-after-precopy
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All available upstream
● Userfaultfd() syscall in Linux Kernel >= v4.3
● Postcopy live migration in:

– QEMU >= v2.5.0
● Author: David Gilbert @ Red Hat Inc.

– Postcopy in Libvirt >= 1.3.4
– OpenStack Nova >= Newton

● In production since RHEL 7.3



Copyright © 2017 Red Hat Inc.

55

Live migration total time
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Max UDP latency
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userfaultfd v4.13 features
● The current v4.13 upstream kernel supports:

– Missing faults (i.e. missing pages EVENT_PAGEFAULT)
● Anonymous (UFFDIO_COPY, UFFDIO_ZEROPAGE, UFFDIO_WAKE)
● Hugetlbfs (UFFDIO_COPY, UFFDIO_WAKE)
● Shmem (UFFDIO_COPY, UFFDIO_ZEROPAGE, UFFDIO_WAKE)

– UFFD_FEATURE_THREAD_ID  (to collect vcpu statistics)
– UFFD_FEATURE_SIGBUS (raises SIGBUS instead of userfault)
– Non cooperative Events

● EVENT_REMOVE (MADV_REMOVE/DONTNEED/FREE)
● EVENT_UNMAP (munmap notification to stop background transfer)
● EVENT_REMAP (non-cooperative process called mremap)
● EVENT_FORK (create new uffd over fork())
● UFFDIO_COPY returns -ESRCH after exit()
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userfaultfd in-progress features
● v4.13 rebased aa.git for anonymous memory 

supports:
– UFFDIO_WRITEPROTECT
– UFFDIO_COPY_MODE_WP

● Same as UFFDIO_COPY but wrprotected
– UFFDIO_REMAP

● monitor can remove memory atomically
● Floating patchset for synchronous EVENT_REMOVE 

to allow multithreaded non cooperative manager
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struct uffd_msg
/* read() structure */
struct uffd_msg {

__u8 event;

__u8 reserved1;
__u16 reserved2;
__u32 reserved3;

union {
struct {

__u64 flags;
__u64 address;

   union {
          __u32 ptid;
    } feat;
 } pagefault;

struct {
__u32 ufd;

} fork;

struct {
__u64 from;
__u64 to;
__u64 len;

} remap;

struct {
__u64 start;
__u64 end;

} remove;

struct {
/* unused reserved fields */
__u64 reserved1;
__u64 reserved2;
__u64 reserved3;

} reserved;
} arg;

} __packed;

sizeof(struct uffd_msg) 32bit/64bit ABI enforcement
Zeros here, can extend with UFFD_FEATURE flags

UFFD_EVENT_* tells which part of the union is valid

Default cooperative support tracking pagefaults
UFFD_EVENT_PAGEFAULT

Non cooperative support tracking MM syscalls
UFFD_EVENT_FORK

UFFD_EVENT_REMAP

UFFD_EVENT_REMOVE|UNMAP
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userfaultfd potential use cases
● Efficient snapshotting (drop fork())
● JIT/to-native compilers (drop write bits)
● Add robustness to hugetlbfs/tmpfs
● Host enforcement for virtualization memory ballooning
● Distributed shared memory projects: at Berkeley and 

University of Colorado
● Tracking of anon pages written by other threads: at 

llnl.gov
● Obsoletes soft-dirty
● Obsoletes volatile pages SIGBUS
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Git userfaultfd branch
● https://git.kernel.org/cgit/linux/kernel/git/andrea/aa.git/log/?h=userfault
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Virtual Memory evolution
● Amazing to see the room for further innovation there was back then

– Things constantly looks pretty mature
● They may actually have been considering my hardware back then 

was much less powerful and not more complex than my 
cellphone

● Unthinkable to maintain the current level of mission critical 
complexity by reinventing the wheel in a not Open Source way
–Can perhaps be still done in a limited set of laptops and 

cellphones models, but for how long?
● Innovation in the Virtual Memory space is probably one among the 

plenty of factors that contributed to Linux success and the KVM lead in 
OpenStack user base too
– KVM (unlike the preceding Hypervisor designs) leverages the power 

of the Linux Virtual Memory in its entirety
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